
Robust Task Execution:

1

Brian C. Williams
16.412J/6.834J
March 14th, 2005

Robust
Task Expansion

Projective
Task Expansion

Goals

Dynamic Scheduling
and Task Dispatch

Task
Dispatch

Temporal Plan

CommandsObservations

Modes

Mission Goals and
Environment Constraints

Temporal
Network
Solver

Temporal
Planner

Initial Conditions

Procedural and Model-based

Model-based Executive

S
Plant

Obs Cntrl

Embedded Programs

S

Continuous
Reactive

Commanding

Continuous
Mode/State
Estimation

Model

Create Languages that are:

• Commanded with desired state

Desiderata: Robust Task-level Execution

Model-based

• Suspicious
•Monitor intentions and plans

• Self-Adaptive
• Exploits and generates contingencies

• Anticipatory
• Predicts, plans and verifies into future

•State Aware

• Fault Aware
•Reasons about and responds to failure

Outline

•	 Safe Procedural Execution
•	 Model-Predictive Dispatch
• Model-based Reactive Planning

Robust Task Execution: RAPS [Firby PhD]

•	 RAPS Monitors Success Against Spec

(define-rap (move-to thing place)
(succeed (LOCATION thing place))
(method

(context (and (LOCATION thing loc)

(not (= loc UNKNOWN))))

(task-net
(t0 (goto loc) ((TRUCK -LOCATION loc) for t1))
(t1 (pickup thing)((TRUCK -HOLDING thing) for t2)
((TRUCK -HOLDING thing) for t3))
(t2 (goto place) ((TRUCK-LOCATION place) for t3))
(t3 (putdown thing))))

(method

(context (LOCATION thing UNKNOWN))

(task-net

(t0 (goto WAREHOUSE)))))

Robust Task Execution: RAPS [Firby PhD]

•	 RAPS Exploits contingencies by performing
functionally redundant method selection

(define-rap (move -to thing place)
(succeed (LOCATION thing place))
(method

(context(and (LOCATION thing loc)

(not (= loc UNKNOWN))))

(task-net
(t0 (goto loc) ((TRUCK -LOCATION loc) for t1))
(t1 (pickup thing)((TRUCK -HOLDING thing) for t2)
((TRUCK -HOLDING thing) for t3))
(t2 (goto place) ((TRUCK-LOCATION place) for t3))
(t3 (putdown thing))))

(method

(context (LOCATION thing UNKNOWN))

(task-net

(t0 (goto WAREHOUSE)))))

1

Deductive ControllerMode
Estimation

Mode
Reconfiguration

• RAPS Exploits contingencies by performing functionally
redundant method selection

– Methods are chosen based on the current situation.
– If a method fails, another is tried instead.
– Tasks do not complete until satisfied.
– Methods can include monitoring subtasks to deal with

contingencies and opportunities.

�Methods selected reactively
�Model -predictive dispatch

�Goals explicitly observable and controllable
�Model -based execution

Robust Task Execution: RAPS [Firby PhD]

Control Sequencer

Environment Model

CommandsObservations

Control Program

Kirk Model-based ExecutiveRMPL Model-based Program

location goalslocation estimates

Selects consistent
threads of activity

from redundant methods

Tracks
location

Finds least
cost paths

� Executes concurrently
� Preempts
� non -deterministic choice
� A[l,u] timing
� A at l location

HOMEHOME

T
W
O

Enroute
COLLECTION POINTCOLLECTION POINT RENDEZVOUSRENDEZVOUS

Diverge
SCIENCE AREA 1’SCIENCE AREA 1’

SCIENCE AREA 3SCIENCE AREA 3

Landing Site: ABC

Landing Site: XYZ

O
N
E

SCIENCE AREA 1SCIENCE AREA 1

Executive
• pre-plans activities
• pre-plans paths
• dynamically schedules [Tsmardinos et al.] Plant

Schedules and Dispatches
Activities Dynamically

Outline

• Safe Procedural Execution
• Model-Predictive Dispatch

– Model-based Programming
– Temporal Plan Networks (TPN)
– Activity Planning (Kirk)
– Unifying Activity and Path Planning

• Model-based Reactive Planning

Example: Cooperative Mars Exploration

How do we coordinate heterogeneous teams of orbiters,
rovers and air vehicles to perform globally optimal
science exploration?

Properties:
� Teams exploit a hierarchy of complex strategies.
� Maneuvers are temporally coordinated.
� Novel events occur during critical phases.
� Quick responses draw upon a library of contingencies.
� Selected contingencies must respect timing constraints.

HOMEHOME

TWO

EnrouteCOLLECTION POINTCOLLECTION POINT RENDEZVOUSRENDEZVOUS

Diverge
SCIENCE AREA 1’SCIENCE AREA 1’

SCIENCE AREA 3SCIENCE AREA 3

Landing Site: ABC

Landing Site: XYZ

ONE

SCIENCE AREA 1SCIENCE AREA 1

Example: Cooperative Mars Exploration Reactive Model-based Programming

Idea: Describe team behaviors by starting with a rich concurrent ,
embedded programming language (RMPL,TCC, Esterel):

� c
� If c next A
� Unless c next A
� A, B
� Always A

• Sensing/actuation activities
• Conditional execution
• Preemption
• Full concurrency
• Iteration

� A [l,u] • Timing

Add temporal constraints:

� Choose {A, B} • Contingency

Add choice (non-deterministic or decision-theoretic):

2

Example Enroute Activity:

Enroute

RendezvousRendezvous Rescue AreaRescue Area

Corridor 2

Corridor 1

RMPL for Group-Enroute

Activities:
Group-Enroute()[l,u] = {

choose {
do {

Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];
} maintaining PATH1_OK,
do {

Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];
} maintaining PATH2_OK

};

{

Group-Transmit(OPS,ARRIVED)[0,2],
do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED

}
}

RMPL for Group-Enroute

Sequentiality:
Group-Enroute()[l,u] = {

choose { Concurrency :
do {

Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];
} maintaining PATH1_OK,
do {

Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];
} maintaining PATH2_OK

} ;

{

Group-Transmit(OPS,ARRIVED)[0,2],
do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED

}
}

RMPL for Group-Enroute

Group-Enroute()[l,u] = {
choose {

do {
Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];

} maintaining PATH1_OK,
do {

Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];
} maintaining PATH2_OK

};

{

Group-Transmit(OPS,ARRIVED)[0,2],
do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED

}
}

RMPL for Group-Enroute

Conditionality
Group-Enroute()[l,u] = {

choose { and Preemption:
do {

Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];
} maintaining PATH1_OK,
do {

Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];
} maintaining PATH2_OK

};

{

Group-Transmit(OPS,ARRIVED)[0,2],
do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]
} watching PROCEED

}
}

RMPL for Group-Enroute

Temporal Constraints:
Group-Enroute()[l,u] = {

choose {
do {

Group-Fly-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];
} maintaining PATH1_OK,
do {

Group-Fly-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];
} maintaining PATH2_OK

};

{

Group-Transmit(OPS,ARRIVED)[0,2],

do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]

} watching PROCEED

}

}

3

RMPL for Group-Enroute

Non-deterministic
Group-Enroute()[l,u] = {

choose {	 choice:
do {

Group-Traverse-Path(PATH1_1,PATH1_2,PATH1_3,RE_POS)[l*90%,u*90%];
} maintaining PATH1_OK,
do {

Group-Traverse-Path(PATH2_1,PATH2_2,PATH2_3,RE_POS)[l*90%,u*90%];
} maintaining PATH2_OK

};
{

Group-Transmit(OPS,ARRIVED)[0,2],

do {

Group-Wait(HOLD1,HOLD2)[0,u*10%]

} watching PROCEED

}

}

Model-Predictive Dispatch for RMPL

How do we provide fast, temporally flexible planning for
contingent method selection?

•	 Graph-based planners support fast planning.
•	 … but plans are totally order.
•	 Desire flexible plans based on simple temporal networks

(e.g., Constrain-based Interval Planning).

How do we create temporally flexible plan graphs?
•	 Augment simple temporal networks

with activities & choice.
� temporal plan network TPN).

RMPL Compiler

Temporal Plan Network (TPN) with STN

Reactive Temporal Planner � Selects schedulable
execution threads of
TPN

Reactive Model
Programming Language

Concurrent Plan
� Plan = Execution

threads related by
Simple Temporal Net

� Represents all
RMPL executions

-based

Model-Predictive Dispatch for RMPL Outline

•	 Safe Procedural Execution
•	 Model-Predictive Dispatch

– Model-based Programming
– Temporal Plan Networks (TPN)
– Activity Planning (Kirk)
– Unifying Activity and Path Planning

• Model-based Reactive Planning

Enroute Activity:

• Start with flexible plan representation

Enroute
1

4 5

8

9 10

13

2

11 12

Group Traverse Group Wait

Group Transmit

Science Target

Activity (or sub-activity)

Enroute Activity:

• Start with flexible plan representation

1

4 5

8

2

[405, 486]

Group Traverse Group Wait

Group Transmit

[0, 54]

[0, 2]

[0,]

[0, 0][0, 0]

[0, 0]

[0, 0]

[0, 0] [0, 0]

Science Target

Enroute [450,540]

Activity (or sub-activity)

Duration (temporal constraint)

4

Enroute Activity:

• Add conditional nodes

3

1

4 5

8

2

Group Traverse

[405, 486]

[405, 486]

Group Traverse Group Wait

Group Transmit

[0, 54]

[0, 2]

[0,]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0] [0, 0]

Science Target

Enroute [450,540]

Activity (or sub-activity)

Duration (temporal constraint)

Conditional node

Outline

• Safe Procedural Execution
• Model-Predictive Dispatch

– Model-based Programming
– Temporal Plan Networks (TPN)
– Activity Planning (Kirk)
– Unifying Activity and Path Planning

• Model-based Reactive Planning

Planning Group-Enroute

Group-Enroute
[500,800]

To Plan:

3

6

4 5
[405,486]

Ask(PATH1=OK)

1 2

7
Ask(PATH2=OK)

8

[405,486]

[450,540]

Ask(PROCEED)

11

9 10
[0,54]

12

1
3

[0,2]

[0,¥]

[0,¥] [0,¥]

14 15

Tell(PATH1=OK)

[450,450]
16 17

Tell(PROCEED)

[200,200]

s e

[10,10] [0,¥]

Group Traverse

Group Traverse Group Wait

Group Transmit

Science Target

• Instantiate Group-Enroute
• Add External Constraints (Tells)

Enroute Activity:

•Add temporally extended, symbolic constraints

3

1

4 5

8

9 10

13

2

6 7 11 12

Group Traverse

[405, 486]

[405, 486]

Group Traverse Group Wait

Group Transmit

[0, 54]

[0, 2]

[0,]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0]

[0, 0] [0, 0]

Ask(PATH1 = OK)

Ask(PATH2 = OK)

Ask(EXPLORE = OK)Science Target

Enroute [450,540]

Activity (or sub-activity)

Duration (temporal constraint)

Conditional node

Symbolic constraint (Ask,Tell)

Planning Group-Enroute

Group-Enroute

[450,540]

3

6

4 5
[405,486]

Ask(PATH1=OK)

1 2

7
Ask(PATH2=OK)

8

[405,486]

Ask(PROCEED)

11

9 10
[0,54]

12

1
3

[0,2]

[0,¥]

Group Traverse

Group Traverse Group Wait

Group Transmit

Science Target

To Plan:
• Instantiate Group-Enroute

Generates Schedulable Plan
Group-Enroute

[500,800]

To Plan:

3

6

4 5
[405,486]

Ask(PATH1=OK)

1 2

7

Ask(PATH2=OK)

8

[405,486]

[450,540]

Ask(PROCEED)

11

9 10
[0,54]

12

13

[0,2]

[0,¥]

14 15

Tell(PATH1=OK)

[450,450]
16 17

Tell(PROCEED)

[200,200]

s e

[10,10] [0,¥]

[0,¥] [0,¥]

Group Traverse

Group Traverse Group Wait

Group Transmit

Science Target

• Instantiate Group-Enroute • Trace Trajectories
• Add External Constraints • Check Schedulability

• Satisfy and Protect Asks

5

Trace Trajectories Trace Trajectories

• Find paths from start-node to end-node • Not a decision-node: Follow all outarcs

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

Trace Trajectories Trace Trajectories

• Not a decision-node: Follow all outarcs • Not a decision-node: Follow all outarcs

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

Trace Trajectories Trace Trajectories

• Decision-node: Select a single outarc • Not a decision-node: Follow all outarcs

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

6

Trace Trajectories Trace Trajectories

• Continue • Not a decision-node: Follow all outarcs

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

Trace Trajectories Trace Trajectories

• Continue

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

1 2

3 4 5 6

7 8 9

10 11 12

13 14

Start End

15 16 17 18

Check Schedulability Check Schedulability

• Don’t test consistency at each step.
�Only when a path induces a cycle, • Example: Inconsistent

check for negative cycle in the STN distance graph

[18,20] [18,20]

1 2

3 4 5 6

7 8 9

10 11 12

13 14

15 16 17 18

[0,0]

[0,0]

[0,0] [0,0]

[0,0]

[0,0]
[0,0]

[0,0]

[0,¥]

[2,3]

[15,16]

[4,6]

[5,5][3,8]

[
[0,0]

1 2

3 4 5 6

7 8 9

10 11 12

13 14

15 16 17 18

[0,0]

[[

[

[
[

[

[0,0]

[0,¥]

[

[

[

[5,5][3,8]

0,0]

0,0] 0,0]

0,0]

0,0]
0,0]

0,0]

2,3]

15,16]

4,6]

7

Trace Alternative Trajectories Trace Alternative Trajectories

• Backtrack to choice • Complete paths

1 2

3 4 5 6

7 8 9

10 11 12

13 14

15 16 17 18

[18,20]

[0,0]

[0,0]

[0,0] [0,0]

[0,0]

[0,0]
[0,0]

[0,0]

[0,0]

[0,¥]

[2,3]

[15,16]

[4,6]

[5,5][3,8]

[0,0]

[0,0] [12,13]

[0,0]

1 2

3 4 5 6

7 8 9

10 11 12

13 14

15 16 17 18

[18,20]

[0,0]

[0,0]

[0,0] [0,0]

[0,0]

[0,0]
[0,0]

[0,0]

[0,0]

[0,¥]

[2,3]

[15,16]

[4,6]

[5,5][3,8]

[0,0]

[0,0] [12,13]

[0,0]

How Do We Handle Asks?

Group-Enroute Satisfying Asks

3

6

4 5
[405,486]

Ask(PATH1=OK)

1 2

7
Ask(PATH2=OK)

8

[405,486]

[450,540]

Ask(PROCEED)

11

9 10
[0,54]

12

1
3

[0,2]

[0,¥]

[0,¥] [0,¥]

14 15

Tell(PATH1=OK)

[450,450]
16 17

Tell(PROCEED)

[200,200]

s e

[10,10] [0,¥]

Group Traverse

Group Traverse Group Wait

Group Transmit

Science Target

[500,800]
• Compute bounds on activities.
• Link ask to equivalent, overlapping tell.
• Constrain tell to contain ask.

5

7 8 9

10 11 12

6

ask(c)

)tell(c

[4,6] [5,8] [7,11]

[4,6] [8,11]

[4,6] [6,9] [7,10]Unconditional planning approach:
• Guarantee satisfaction of asks at compile time.
• Treatment similar to causal-link planning

Avoiding Threats Symbolic Constraint Consistency

• Identify overlapping Inconsistent activities. • Promote or demote

[4,6] [5,8] [7,11]

5

7 8 9

10 11 12

6

tell(c)

[0,inf]

[4,6] [5,8] [7,9]

5

7 8 9

10 11 12

6

tell(c)

[4,6] [8,11] [4,6] [8,11]

tell(�c) tell(�c)
[4,6] [6,9] [7,10] [4,6] [7,9] [7,10]

8

How do we optimally select

activities and paths?

Background: Can perform global path planning using
Rapidly -exploring Random Trees (RRTs) (la Valle).

Approach:
1. Search for globally optimal activity and path plan by

• unifying TPN & RRT graphs, and
• by searching hybrid graph best first.

2. Refine plan using receding horizon control.

Enroute Activity:

•Closer look at Group Traverse sub-activity

Enroute [450,540]
1 2

[0, 0] Group Traverse Group Wait [0, 0]

[0, 0] 4
[405, 486]

5 [0, 0] [0, 0] 9
[0, 54]

10 [0, 0]
Ask(PATH1 = OK) Science Target Ask(PROCEED)

3 8 13
[0, 0] Group Traverse [0, 0]

[0, 0]
Group Transmit [0,]

[405, 486] [0, 2]
6 7 11

Ask(PATH2 = OK)

12

Traverse to Science Target

Group Traverse sub-activity:

•Traverse through way points to science target

Group Traverse [405, 486]

3

4

8

6 7

[0, 0]
[0, 0]

Ask(PATH2 = OK)
5

Group Traverse [405, 486]

[0, 0] [0, 0]

Ask(PATH2 = OK)

3

4

8

6 7

[0, 0]
[0, 0]

5

•One obstacle between nodes 4 and 5
•Two Obstacles between nodes 6 and 7

[0, 0] [0, 0]

Group Traverse sub-activity:

ObstacleObstacle

ObstacleObstacle ObstacleObstacle

Group Traverse sub-activity:

•Non-explicit representations of obstacles obtained from an increment al
collision detection algorithm

3

4

8

6 7

[0, 0] [0, 0]

5

[0, 0] [0, 0]

RRT: Example

Path 1

3

4

6

[0, 0] [0, 0]

[0, 0] [0, 0]

Path 2

8

7

5

9

RRT: Example

Planner considers rovers taking Path 1:

xinit
Path 1

[0, 0]

3

4

6

[0, 0]

Path 2

8

7

[0, 0]

5

[0, 0]

xgoal

RRT: Example

Path 1

xinit x
Xobs

goal

4 5

RRT: Example RRT: Example

Path 1 Path 1

4 5

xinit xgoal

Xobs 4 5

xinit xgoal

Xobs

RRT: Example RRT: Example

Path 1 Path 1

4 5

xinit xgoal

Xobs 4 5

xinit xgoal

Xobs

10

11

4 5

xinit

Path 1

xgoal

Xobs

RRT:Example

4 5

xinit

Path 1

xgoal

Xobs

Common Node

RRT:Example

4 5

xinit

Path 1

xgoal

Xobs

RRT:Example

4 5

xinit

Path 1

xgoal

Xobs

RRT:Example

4 5

xinit

Path 1

xgoal

Xobs

RRT:Example Model-Predictive Dispatch

Goal: Fast, robust, temporal execution with contingencies,
in an uncertain environments.

Solution: Model-predictive Dispatch, a middle ground between
non-deterministic programming and temporal planning.

• Rich embedded language, RMPL, for describing complex
concurrent team strategies extended to time and contingency.

• Kirk Interpreter “looks” for schedulable threads of execution
before “leaping” to execution.

• Temporal Plan Network provides a flexible, temporal, graph-
based planning paradigm built upon Simple Temporal Nets.

• Global optimality achieved by unifying activity planning and
global kino-dynamic path planning.

