

Outline

- Optimal Path Planning in Partially Known Environments.
- Continuous Optimal Path Planning
\square Dynamic A*
-Incremental A^{*} (LRTA*) [Appendix]
[Zellinsky, 92]

1. Generate global path plan from initial map.
2. Repeat until goal reached or failure:
\square Execute next step in current global path plan

- Update map based on sensors.
- If map changed generate new global path from map.

| Compute Optimal Path |
| :--- | :--- | :--- | :--- |
| \qquadJ M N O
 E I L G
 B D H K
 S A C F |

Begin Executing Optimal Path

- Robot moves along backpointers towards goal.

Obstacle Encountered!

- At state A, robot discovers edge from D to H is blocked (cost 5,000 units).
- Update map and reinvokeplanner.

Continue Path Execution

- A's previous path is still optimal.
- Continue moving robot along back pointers

Second Obstacle, Replan!

- At C robot discovers blocked edges from C to F and H (cost 5,000 units).
- Update map and reinvoke planner.

Path Execution Achieves Goal

Outline

- Follow back pointers to goal.
- No further discrepancies detected; goal achieved!
- Optimal Path Planning in Partially Known Environments.
- Continuous Optimal Path Planning

םDynamic A*
alncremental A^{*} (LRTA*) [Appendix]

What is Continuous

Optimal Path Planning?

- Supports search as a repetitive online process

Dynamic A* (aka D*)
[Stenz, 94]

1. Generate global path plan from initial map.

- Exploits similarities between a series of searches to solve much faster than solving each search starting from scratch.
- Reuses the identical parts of the previous search tree, while updating differences.
- Solutions guaranteed to be optimal.
- On the first search, behaves like traditional algorithms.
- D* behaves exactly likeDijkstra's.
\square Incremental $\mathrm{A}^{*} \mathrm{~A}^{*}$ behaves exactly like A^{*}.

2. Repeat until Goal reached, or failure.

- Execute next step of current global path plan.
- Update map based on sensor information.
- Incrementally update global path plan frommap changes.
$\rightarrow \quad 1$ to 3 orders of magnitude speedup relative to a non-incremental path planner.

Map and Path Concepts

- $c(X, Y)$:

Cost to move from Y to X.
$\mathrm{c}(\mathrm{X}, \mathrm{Y})$ is undefined if move disallowed.

- Neighbors (X) :

Any Y such that $\mathrm{c}(\mathrm{X}, \mathrm{Y})$ or $\mathrm{c}(\mathrm{Y}, \mathrm{X})$ is defined.

- $o(G, X)$:

True optimal path cost to Goal from X.

- $h(G, X)$:

Estimate of optimal path cost to goal from X .

- $b(X)=Y$: backpointer from X to Y.

Y is the first state on path from X to G .

D* Search Concepts

- State $\operatorname{tag} t(X)$:
- NEW: has no estimate h.
$\square O P E N$: estimate needs to be propagated.
$\square C L O S E D$: estimate propagated.
- OPEN list:

States with estimates to be propagated to other states.
\square States on list tagged OPEN
\square Sorted by key function k (defined below).

[^0]
Use D* to Compute Initial Path

$\underset{\text { NEW }}{J}$	$\underset{\text { NEW }}{M}$	$\underset{\text { NEW }}{\text { N }}$	$\underset{\text { NEW }}{\mathrm{O}}$
$\underset{\text { NEW }}{\text { E }}$	$\stackrel{1}{\text { new }}$	$\stackrel{\text { NEW }}{ }$	$\underset{\text { NEW }}{G}$
$\underset{\text { NEW }}{B}$	$\underset{N \in W}{D}$	$\underset{\text { NEW }}{\mathrm{H}}$	$\underset{\text { NEW }}{K}$
$\mathrm{SEW}_{\text {SEW }}{ }^{2}$	$\underset{\text { NEW }}{\text { A }}$	$\underset{\text { NEW }}{\text { C }}$	$\underset{\text { NEW }}{\text { F }}$

States initially tagged NEW (no cost determined yet).

Running D* First Time on Graph
Initially

- Mark G Open and Queue it
- Mark all other states New
- Run Process_States on queue until path found or empty.

When edge cost $c(X, Y)$ changes

- If X is marked Closed, then
- Update $\mathrm{h}(\mathrm{X})$
\square Mark X open and queue with key $\mathrm{h}(\mathrm{X})$.

Use D* to Compute Initial Path

$\underset{\text { NEW }}{J}$	$\underset{N \in \mathbb{W}}{M}$	$\underset{N \in W}{N}$	$\underset{\text { New }}{\bigcirc}$
$\underset{\text { NEW }}{\text { E }}$	$\stackrel{1}{\text { NEW }}$	${ }_{\text {NEW }} \mathrm{L}$	$\underset{\substack{\mathrm{h}=0 \\ G \\ \mathrm{OPEN}}}{ }$
$\underset{\text { NEW }}{\mathrm{B}_{\text {d }}}$	$\mathrm{D}_{\text {NEW }}$	$\underset{\text { NEW }}{H}$	$\underset{\text { NEW }}{K}$
$\underset{N \in W}{ } S^{Q}$	$\underset{N E W}{\text { A }}$	$\underset{\text { NEW }}{C}$	$\underset{N E W}{\text { F }}$

- Add Goal node to the OPEN list.
- Process OPEN list until the robot's current state is CLOSED.

Process_State: New or Lowered State
 - Remove from Open list, state X with lowest k
 - If X is a new/lowered state, its path cost is optimal! Then propagate to each neighbor Y ㅁf Y is New, give it an initial path cost and propagate. - If Y is a descendant of X, propagate any change. - Else, if X can lower Y s path cost, Then do so and propagate.

Use D* to Compute Initial Path

${ }_{\text {New }}$	$\underset{\text { New }}{\text { M }}$	$\underset{N}{N}$		O OPEN List
		n=1	OPRen ${ }^{\text {n }}$ 叫	2(1,K)(1,L) (1,0)
E EN	${ }_{\text {New }}$	oben	$\mathrm{clu}_{\text {ceop }}$	
$\underset{\text { cew }}{ }$	${ }_{\text {New }}$	$\underset{\text { New }}{\text { H }}$	$\begin{array}{\|l\|l\|} \hline \mathrm{n}=1 \\ \text { OREN } \end{array}$	
$\mathrm{S}_{\mathrm{N} \times \mathrm{N}}{ }^{\text {a }}$	$\underset{\text { New }}{\text { A }}$	$\underset{N \in N}{C}$	$\underset{\text { wew }}{\text { F }}$	

- Add new neighbors of G onto the OPEN list
- Create backpointers to G.

Use D* to Compute Initial Path

- Add new neighbors of G onto the OPEN list
- Create backpointers to G.

Use D* to Compute Initial Path

$\mathrm{J}_{\text {New }}$	$\underset{\text { NEW }}{M}$	$\underset{N \in W}{N}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{O} \end{aligned}$
$\underset{\text { NEW }}{\text { E }}$	NEW		
$\underset{\text { new }}{\text { B }}$	$\underset{\text { new }}{\text { D }}$		$\begin{aligned} & \begin{array}{l} \mathrm{n}=1 \\ \mathrm{~K} \\ \text { closed } \end{array} \end{aligned}$
$\underset{N \in W}{S_{0}}$	$\underset{\text { NEW }}{\text { A }}$	$\underset{\text { NEW }}{\text { C }}$	$\underset{\text { OPEN }}{F}$

	OPEN List
1	$(0, \mathrm{G})$
2	$(1, \mathrm{~K})(1, \mathrm{~L})(1, \mathrm{O})$
3	$(1, \mathrm{~L})(1, \mathrm{O})(2, \mathrm{~F})(2, \mathrm{H})$

8: if kold $=h(x)$ then
9: for each neighbor
10: if $t(Y)=N E W$ or
$\begin{array}{ll}\text { 11: } & (H)=N(Y)=X \text { and } h(Y) ? h(X)+c(X, Y)) \text { or } \\ \text { 12: } & (b(Y) ? X \text { and } h(Y)>h(X)+c(X Y) \text {) }\end{array}$
13: $\quad \mathrm{b}(\mathrm{Y})=\mathrm{X} ; \operatorname{lnsert}(\mathrm{Y}, \mathrm{h}(\mathrm{X})+\mathrm{c}(\mathrm{X}, \mathrm{Y}))$

- Add new neighbors of K on to the OPEN list
- Create backpointers.

Use D* to Compute Initial Path

	OPEN List
1	$(0, \mathrm{G})$
2	$(1, \mathrm{~K})(1, \mathrm{~L})(1, \mathrm{O})$
3	$(1, \mathrm{~L})(1, \mathrm{O})(2, \mathrm{~F})(2, \mathrm{H})$
4	$(2, \mathrm{~F})(2, \mathrm{H})(2, \mathrm{I})(2, \mathrm{~N})$
5	$(2, \mathrm{H})(2, \mathrm{I})(2, \mathrm{~N})(3, \mathrm{C})$

- Continue until current state S is closed.
- Add new neighbors of L , then O on to the OPEN list
- Create backpointers.

Use D* to Compute Initial Path

	OPEN List
1	(0,G)
2	$(1, \mathrm{~K})(1, \mathrm{~L})(1, \mathrm{O})$
3	(1,L) (1,O) (2,F) (2,H)
4	(2,F) (2,H) (2,I) (2,N)
```8: if kold = h(X) then 9: for each neighbor }Y\mathrm{ of }X\mathrm{ : 10: if t(Y)=NEW or 11: 12: (b(Y)? X and h(Y)>h(X)+c(X,Y)) then 13: b```	

Use D* to Compute Initial Path


	OPEN List
1	$(0, \mathrm{G})$
2	$(1, \mathrm{~K})(1, \mathrm{~L})(1, \mathrm{O})$
3	$(1, \mathrm{~L})(1, \mathrm{O})(2, \mathrm{~F})(2, \mathrm{H})$
4	$(2, \mathrm{~F})(2, \mathrm{H})(2, \mathrm{I})(2, \mathrm{~N})$
5	$(2, \mathrm{H})(2, \mathrm{I})(2, \mathrm{~N})(3, \mathrm{C})$
6	$(2, \mathrm{I})(2, \mathrm{~N})(3, \mathrm{C})(3, \mathrm{D})$

- Continue until current state $S$ is closed.

Use D* to Compute Initial Path

${ }_{\text {New }}$	¢ $\begin{gathered}\text { M } \\ \text { OPeN } \\ \text { OPN }\end{gathered}$		
	${ }^{\mathrm{h}=3}$		
${ }_{\text {New }}$			
$\mathrm{SNEW}^{\text {a }}$	${ }_{\text {N }}^{\text {A }}$		


	OPEN List
1	$(0, \mathrm{G})$
2	$(1, \mathrm{~K})(1, \mathrm{~L})(1, \mathrm{O})$
3	$(1, \mathrm{~L})(1, \mathrm{O})(2, \mathrm{~F})(2, \mathrm{H})$
4	$(2, \mathrm{~F})(2, \mathrm{H})(2, \mathrm{I})(2, \mathrm{~N})$
5	$(2, \mathrm{H})(2, \mathrm{I})(2, \mathrm{~N})(3, \mathrm{C})$
6	$(2, \mathrm{I})(2, \mathrm{~N})(3, \mathrm{C})(3, \mathrm{D})$
7	$(2, \mathrm{~N})(3, \mathrm{C})(3, \mathrm{D})(3, \mathrm{E})(3, \mathrm{M})$
8	$(3, \mathrm{C})(3, \mathrm{D})(3, \mathrm{E})(3, \mathrm{M})$

- Continue until current state S is closed.


## Use D* to Compute Initial Path



- Continue until current state S is closed

	OPEN List
1	$(0, \mathrm{G})$
2	$(1, \mathrm{~K})(1, \mathrm{~L})(1, \mathrm{O})$
3	$(1, \mathrm{~L})(1, \mathrm{O})(2, \mathrm{~F})(2, \mathrm{H})$
4	$(2, \mathrm{~F})(2, \mathrm{H})(2, \mathrm{I})(2, \mathrm{~N})$
5	$(2, \mathrm{H})(2, \mathrm{I})(2, \mathrm{~N})(3, \mathrm{C})$
6	$(2, \mathrm{I})(2, \mathrm{~N})(3, \mathrm{C})(3, \mathrm{D})$
7	$(2, \mathrm{~N})(3, \mathrm{C})(3, \mathrm{D})(3, \mathrm{E})(3, \mathrm{M})$
8	$(3, \mathrm{C})(3, \mathrm{D})(3, \mathrm{E})(3, \mathrm{M})$
9	$(3, \mathrm{D})(3, \mathrm{E})(3, \mathrm{M})(4, \mathrm{~A})$
10	$(3, \mathrm{E})(3, \mathrm{M})(4, \mathrm{~A})(4, \mathrm{~B})$

Use D* to Compute Initial Path


- Continue until current state $S$ is closed.

Use D* to Compute Initial Path


- Continue until current state $S$ is closed.

- $\qquad$

Use D* to Compute Initial Path


- Continue until current state $S$ is closed.


Begin Executing Optimal Path


- Robot moves along backpointers towards goal
- Uses sensors to detect discrepancies along way


## Obstacle Encountered!



- At state $A$, robot discovers edge $D$ to $H$ is blocked off (cost 5,00 units).
- Update map and reinvoke $D^{*}$


## Running D* After Edge Cost Change

When edge cost $c(X, Y)$ changes

- If $X$ is marked Closed, then -Update $\mathrm{h}(\mathrm{X})$
$\square$ Mark $X$ open and queue, key is new $h(X)$.
- Run Process_State on queue
auntil path to current state is shown optimal, $\square$ or queue Open List is empty.

D* Update From First Obstacle


- Assign cost of 5,000 for D to H
- Propagate changes starting at H

D* Update From First Obstacle


- Raise cost of H's descendant D, and propagate.


## Process_State: Raised State

- If $X$ is a raise state its cost might be suboptimal.
- Try reducing cost of Xusing an optimal neighbor Y . $\square \mathrm{h}(\mathrm{Y})=[\mathrm{h}(\mathrm{X})$ before it was raised $]$
- Propagate $X$ 's cost to each neighbor $Y$ - If Y is New, Then give it an initial path cost and propagate. $\square$ If $Y$ is a descendant of $X$, Then propagate ANY change. - If $X$ can lower $Y$ 's path cost,
- Postpone: Queue X to propagate when optimal (reach current $\mathrm{h}(\mathrm{X})$ - If Y can lower X 's path cost, and Y is suboptimal,
- Postpone: Queue $Y$ to propagate when optimal (reach current $h(Y)$ ). $\rightarrow$ Postponement avoids creating cycles.

D* Update From First Obstacle


4: if kold < $h(X)$ then


- D may not be optimal, check neighbors for better path.
- Transitioning to I is better, and l's path is optimal, so update $D$

D* Update From First Obstacle


- All neighbors of $D$ have consistent hvalues.
- No further propagation needed.

Continue Path Execution


D* Update From Second Obstacle


8: if kold $=h(X)$ then
9: for each neighbor $Y$
9. For each neighbor $Y$ of

11: $\quad(\mathbf{b}(Y)=X$ and $h(Y) ? h(X)+c(X, Y)$ or
12: $(b(Y)$ ? and $h(Y)>h(X)+c(X, Y)$ )
$\begin{array}{ll}\text { 12: } & (b(Y) ? X \text { and } h(Y)>h(X)+c(X, Y)) \text { th } \\ \text { 13: } & b(Y)=X ; \operatorname{lnsert}(Y, h(X)+c(X, Y))\end{array}$

- Processing F raises descendant C 's cost, and propagates.
- Processing H does nothing.



## Process_State: Raised State

- If $X$ is a raise state its cost might be suboptimal.
- Try reducing cost of $X$ using an optimal neighbor $Y$. $\square \mathrm{h}(\mathrm{Y})=[\mathrm{h}(\mathrm{X})$ before it was raised $]$
- propagate $X$ 's cost to each neighbor $Y$

If Y is New, Then give it an initial path cost and propagate. $\square$ If $Y$ is a descendant of $X$, Then propagate ANY change. - If $X$ can lower $Y$ 's path cost,

- Postpone: Queue X to propagate when optimal (reach current $\mathrm{h}(\mathrm{X})$ )
- If $Y$ can lower $X$ 's path cost, and $Y$ is suboptimal,
- Postpone: Queue Y to propagate when optimal (reach current $\mathrm{h}(\mathrm{Y})$ ).
$\rightarrow$ Postponement avoids creating cycles.

D* Update From Second Obstacle

- A may not be optimal, check neighbors for better path
- Transitioning to $D$ is better, and $D$ 's path is optimal, so update $A$


D* Update From Second Obstacle



- A may not be optimal, check neighbors for better path.
- Transitioning to $D$ is better, and $D$ 's path is optimal, so update $A$

D* Update From Second Obstacle


- A can improve neighbor $C$, so queue $C$.

D* Update From Second Obstacle


- C lowered to optimal; no neighbors affected.
- Current state reached, so Process_Stateterminates.


## Complete Path Execution



- Follow back pointers to Goal.
- No further discrepancies detected; goal achieved!

Recap: Dynamic A*

- Supports search as a repetitive online process.
- Exploits similarities between a series of searches to solve much faster than from scratch.
- Reuses the identical parts of the previous search tree, while updating differences.
- Solutions guaranteed to be optimal.
- On the first search, behaves like traditional Dijkstra.
$\rightarrow \quad 1$ to 3 orders of magnitude speedup relative to a non-incremental path planner.


## D* Pseudo Code

Function: Modify-Cost ( $\mathrm{X}, \mathrm{y}$, eval) 1: $\quad c(x, y)=$ eval 2: if $\mathrm{t}(\mathrm{x})=\mathrm{CLOSED} \mathrm{C}$
3: return Get-Kmini)
Function: Process-State()
1: $x=$ Min-State()
Function: Process-State()
1: $x=$ Min-State()
1: $X=$ if $X=$ NuLL then return -1
3:
3: $k$ kold $=$ Get - Kmin () ; Delete $(X)$
1: $X=$ if $X=$ NuLL then return -1
3:
3: $k$ kold $=$ Get - Kmin () ; Delete $(X)$
$\begin{array}{ll}\text { 3: } & \text { kold }=G e t-K \min () ; \text {, Delete }(X) \\ \text { 4: } & \text { if kold }<h(X) \text { then }\end{array}$
$\begin{array}{ll}\text { 3: } & \text { kold }=G e t-K \min () ; \text {, Delete }(X) \\ \text { 4: } & \text { if kold }<h(X) \text { then }\end{array}$
for each neighbor $Y$ of $x:$
if $h(y)=$ kold and $h(x)>h(Y)+C(Y, X)$ then
for each neighbor $Y$ of $x:$
if $h(y)=$ kold and $h(x)>h(Y)+C(Y, X)$ then
if $h(Y)=$ kold and $h(x)>h(Y)+c(y, x)$ then
$b(x)=y, h(x)$ (
if $h(Y)=$ kold and $h(x)>h(Y)+c(y, x)$ then
$b(x)=y, h(x)$ (
if kold $=y_{h} h(x)=h(y)+$
if kold $=y_{h} h(x)=h(y)+$
if kold $=h(x)$ then
for each neighbor $Y$ of $X$ :
if kold $=h(x)$ then
for each neighbor $Y$ of $X$ :
for each neighbor $y$ of $x:$
if $t(x)=$ NEW or
$(b(y)=x$ and $h(y)$ ? $h(x)+o(x, y)$ or
for each neighbor $y$ of $x:$
if $t(x)=$ NEW or
$(b(y)=x$ and $h(y)$ ? $h(x)+o(x, y)$ or
$(b(y)=x$, and $h(y) ? h(x)+c(x, y))$ or
$(b(y)=x$ and $h(y) \geqslant h(x)+c(x))$ then
$(b(y)=x$, and $h(y) ? h(x)+c(x, y))$ or
$(b(y)=x$ and $h(y) \geqslant h(x)+c(x))$ then
$(b(y) \geq x$ and $h(y)>h(x)+c(x, y))$ th
$b(y)=x$; Insert $(y, h(x)+c(x, y))$
$(b(y) \geq x$ and $h(y)>h(x)+c(x, y))$ th
$b(y)=x$; Insert $(y, h(x)+c(x, y))$
: else
: else
for each neighbor Y of x ,
for each neighbor Y of x ,
for each neighbor Y of X :
if $\mathrm{t}(\mathrm{Y})=$ NEN or
for each neighbor Y of X :
if $\mathrm{t}(\mathrm{Y})=$ NEN or
$(b(y)=x \operatorname{and} h(y) ? h(x)+c(x, y))$ then
$(b(y)=x \operatorname{and} h(y) ? h(x)+c(x, y))$ then
$b(Y)=x ;$ Insert $(y, h(x)+c(x, y))$
$b(Y)=x ;$ Insert $(y, h(x)+c(x, y))$
else $\quad$ if $b(y) ? x$ and $h(x)>h(x)+c(x, y)$ then
else $\quad$ if $b(y) ? x$ and $h(x)>h(x)+c(x, y)$ then
$f \quad b(y) ? x$ and $h(1)$
Insert $(x, h(x))$
$f \quad b(y) ? x$ and $h(1)$
Insert $(x, h(x))$


ese $b(Y) ? X$ and $h(X)>h(Y)+c(Y, X)$ an
if
$t(y)=$ cLosED and $h(Y)>$ kold then
ese $b(Y) ? X$ and $h(X)>h(Y)+c(Y, X)$ an
if
$t(y)=$ cLosED and $h(Y)>$ kold then
return Get $\begin{aligned} & \text { Insert }-\mathrm{Km} \text { ( }) \\ & \text { ( }\end{aligned}$
return Get $\begin{aligned} & \text { Insert }-\mathrm{Km} \text { ( }) \\ & \text { ( }\end{aligned}$
Function: Insert ( $\mathrm{x}, \mathrm{h}_{\text {max }}$
Function: Insert ( $\mathrm{x}, \mathrm{h}_{\text {max }}$
Function:
1:
if $t(X)=$ NEW
then $k(x)=$
Function:
1:
if $t(X)=$ NEW
then $k(x)=$
then $k(x)=h_{\text {new }}$
e1se if $t(x)=$ OPEN
then $k(x)=h_{\text {new }}$
e1se if $t(x)=$ OPEN
2: else if $t(x)=\begin{aligned} & \text { nem } \\ & \text { then } k(x) \\ & \text { tin }\end{aligned}$
2: else if $t(x)=\begin{aligned} & \text { nem } \\ & \text { then } k(x) \\ & \text { tin }\end{aligned}$
else
else
$k(x)=\min \left(h(x), h_{\text {max }}\right)$
$k(x)=\min \left(h(x), h_{\text {max }}\right)$
$\begin{array}{ll}\text { 4: } & h(x)=h_{\text {nai }} \\ \text { 5: } & \mathrm{t}(\mathrm{x})=\text { OPEN }\end{array}$
$\begin{array}{ll}\text { 4: } & h(x)=h_{\text {nai }} \\ \text { 5: } & \mathrm{t}(\mathrm{x})=\text { OPEN }\end{array}$
17:
17:

Insert (Y, h (Y)
$-\operatorname{Kmin})$


Insert (Y, h (Y)
$-\operatorname{Kmin})$

Recap: Continuous Optimal Planning

1. Generate global path plan from initial map.
2. Repeat until Goal reached, or failure.

- Execute next step of current global path plan.
- Update map based on sensor information.
- Incrementally update global path plan from map changes.


[^0]:    D* Fundamental Search Concepts

    - $k(G, X)$ : key function

    Minimum of
    $\square \mathrm{h}(\mathrm{G}, \mathrm{X})$ before modification, and
    $\square$ all values assumed by $h(G, X)$ since $X$ was placed on the OPEN list.

    - Lowered state : $\mathrm{k}(\mathrm{G}, \mathrm{X})=$ current $\mathrm{h}(\mathrm{G}, \mathrm{X})$,
    $\square$ Propagate decrease to descendants and other nodes.
    - Raised state : $\mathrm{k}(\mathrm{G}, \mathrm{X})<$ current $\mathrm{h}(\mathrm{G}, \mathrm{X})$, $\square$ Propagate increase to dscendants and other nodes. -Try to find alternate shorter paths.

