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Model-Based Vision


• What do the models look like 
• Where do the models come from


• How are the models utilized 
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The Problem
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Optimization/Search Problem


Find the most likely interpretation of the 
image contents that: 

1.	 Identifies the component parts of the 
image correctly. 

2.	 Identifies the scene type.

3.	 Identifies structural relationships between 

the parts of the image. 
Involves: Segmenting into parts, naming the 

parts, and relating the parts. 
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Outline


•	 Overview of statistical methods used in 
speech recognition and NLP 

•	 Image Segmentation and Interpretation 
– image grammars 
– image grammar learning 
– algorithms for parsing patchwork images. 
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Not any description – the best

s s 

np vp vp 

np np 
pp 

np 
np 

noun noun verb noun 
verb noun prep noun 

swat flies like ants 
swat flies like ants 

Bad parse Good parse 
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What’s similar/different between image 

analysis and speech recognition/NLP?


• Similar 
– An input signal must be processed. 
– Segmentation. 
– Identification of components.

– Structural understanding. 

• Dissimilar 
– Text is a valid intermediate goal that separates Speech 

recognition and NLP. Line drawings are less obviously 
useful. 

– Structure in images has much more richness.
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Speech Recognition and NLP


Speech Recognition                        Natural Language Processing 

Part ofSegmentation Sentencespeechinto words tagging Parsing 

• Little backward flow 
• Stages done separately. 
• Similar techniques work well in each of these phases.

• A parallel view can also be applied to image analysis.
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Speech Understanding


• Goal: Translate the input signal into a sequence of words. 
– Segment the signal into a sequence of samples. 

• A = a1, a2, ..., am ai ∈ 

– Find the best words that correspond to the samples based on: 
• An acoustic model. 

– Signal Processing 
– Prototype storage and comparator (identification) 

• A language model. 
• W = w1, w2, ..., wm wi ∈


– Wopt = arg maxw P(W|A)

– Wopt = arg maxw P(A|W) P(W)


• (since P(W|A) = P(A|W) P(W) / P(A) [Bayes]) 
• P(A|W) is the acoustic model. 
• P(W) is the language model. 
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language modeling for speech

n 

(	 (
W P ) =∏ w P i | w1,..., wi − 1) 
i=1


n


(	 (W P ) =∏ w P i | Φ(w1,..., wi − 1)) 
i=1


n


(	 (W P ) =∏ w P i | Φi − 1) 
i=1 

(w P i | wi − 1, wi − 2) = f (wi | wi − 1, wi − 2)

(
w P i | wi − 1, wi − 2) = λ3 f (wi | wi − 1, wi − 2) + λ 2 f (wi | wi − 1) + λ1 f (wi) 

λ1 + λ 2 + λ3 = 1 

•	 Using the above

–	 P(W) can be represented as a HMM and solved efficiently using 

the Viterbi algorithm. 
–	 The good weights λ1, λ2, and λ3 can be computed using the Baum-

Welch algorithm. 
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Natural Language Processing

•	 Part of correctly understanding a sentence comes from 

correctly parsing it. 
•	 Starting with a word list, parsing involves two separable 

activities: 
– Part of speech tagging.


• Find the most probable assignments of parts of 
speech. 

– Parsing the words into a tree. 
• Find the most probable parse tree. 

s


np vp vp


s 

ppnp np	 np 
npnoun noun verb noun 

verb noun prep noun 
swat flies like ants swat flies like ants 
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Part-of-speech tagging


•	 Goal: Assign part-of-speech tags to each 
word in the word sequence. 
– Start with the word sequence 

• W = w1, w2, ..., wm wi ∈ 

– Find the best tags for each word

• T = t1, t2, ..., tm ti ∈ 
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w P 1, n) = ∑ w P , 1 n, t , 1 n + 1)( ( 
t , 1 n +1 

(Topt = max arg t , 1 n t P , 1 n | w , 1 n ) 
(Topt = max arg t , 1 n t P , 1 n, w , 1 n ) 

( (w P n | w , 1 n − , 1 t , 1 n ) = w P n | tn ) 
( (t P n | w , 1 n − 1, t , 1 n − 1) = t P n | tn − 1) 

n 

w P 1, n) = ∑∏ w P i | ti ) t P i + 1 | ti )( ( ( 
t , 1 n +1 i =1 

n 

( ( ( i ,w P ,1 n) = ∑∏ w P i | ti ) t P i + 1 | t t i − 1) 
t , 1 n +1 i =1 

•Topt is the path the HMM traverses in producing the output 
(since the states of the HMM are the tags). 

• Use Viterbi algorithm to find the path.
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PCFG’s

•	 Better language models lead to better results.

•	 Considering the grammar instead of a simple sequence of 

words, the relationships are more meaningful. 
•	 PCFG is <W, N, N1, R> 

–	 W is a set of terminal symbols 
– N is a set of non-terminal symbols

– N1 is the starting symbol

–	 R is a set of rules. 

•	 Each rule Ni→RHS has an associated probability P(Ni→RHS)
which is the probability of using this rule to expand Ni 

•	 The probability of a sentence is the sum of the 
probabilities of all parses. 

•	 Probability of a parse is the product of the probabilities of 
all the productions used. 

•	 Smoothing necessary for missing rules.
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Example PCFG

s → np vp 0.8 
s → vp 0.2 
np → noun 0.4 
np → noun pp 0.4 
np → noun np 0.2 
vp → np vp 0.3 
vp → np vp 0.3 
vp → np vp 0.2 
vp → np vp 0.2 
pp → prep np 1.0 
prep→ like 1.0 
verb→ swat 0.2 
verb→ flies 0.4 
verb→ like 0.4 
noun→ swat 0.1 
noun→ flies 0.4 
noun→ ants 0.5 

• Good parse = .2x.2x.2x.4x.4x1.0x1.0x.4x.5 = 0.000256 
• Bad parse =.8x.2x.4x.1x.4x.3x.4x.4x.5  = 0.00006144


18 



Why these techniques are dominating 

language research


•	 Statistical methods work well

–	 The best POS taggers perform close to 97% accuracy compared to 

human accuracy of 98%. 
–	 The best statistical parsers are at around 88% vs an estimated 95% 

for humans. 
•	 Learning from the corpus 

–	 The grammar can be learned from a representative corpus. 
•	 Basis for comparison 

–	 The availability of corpora with ground truth enables researchers to 
compare their performance against other published 
algorithms/models. 

•	 Performance 
–	 Most algorithms at runtime are fast. 
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Build Image Descriptions
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Patchwork Parsing


•	 Use semantic segmentation to produce a set of 
homogeneous regions 

•	 Based on the contents of the regions and their shape 
hypothesize region contents. 

•	 Region contents is ambiguous in isolation

–	 Use contextual information to reduce ambiguity. 

•	 The image must make sense 
–	 We must be able to produce a parse for it. 

•	 Our interpretation of the image approximates the most 
probable parse. 
–	 Success of the picture language model determines whether most-

probable-parse works. 

•	 Do it (nearly) as well as human experts
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Segmented image labeling


• The image contains n regions r1,n. 
• Each region has a set of neighbors n1,n. 
• P(r1,n) is the sum of the disjoint labelings. 

r P ,1 n ) = ∑ r P ,1 n , l ,1 n )( ( 
l , 1 n 
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• We wish to find the labeling L1,n.


L ,1 n = max arg 
l , 1 n 

= max arg 
l , 1 n 

= max arg 
l , 1 n 

= max arg 
l , 1 n 

n 

∏

i =1 
n 

∏

i =1 

n 

∏

i =1 

n 

∏

i =1 

n r l P i )( i | i , 

r l n P r l P i )( i | i ) ( i | i , 
r n P i )( i | 

l n P r l P i )( i | i ) ( i |

r n P i )
( i | 

l n P r l P i )( i | i ) ( i | 

• P(li|ri) is the optical model. 
• P(ni|li) is the picture language model. 
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Segmentation
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The optical model

•	 Filters produce useful features from the original image.

•	 Semantic Segmentation produces regions. 
•	 Prototype database and comparator produce evidence for labeling 

each region. 

(setq *region-optical-evidence*
'((r1 (field . .5) (swamp . .2) (town . .1) (lake . .1) (road . .05) (river . .05)) 

(r2 (field . .5) (swamp . .2) (town . .1) (lake . .1) (road . .05) (river . .05)) 
(r3 (field . .5) (swamp . .2) (town . .1) (lake . .1) (road . .05) (river . .05)) 
(r4 (field . .1) (swamp . .1) (town . .1) (lake . .3) (road . .1)  (river . .3))
(r5 (field . .1) (swamp . .1) (town . .3) (lake . .1) (road . .3)  (river . .1))
(r6 (field . .1) (swamp . .1) (town . .1) (lake . .3) (road . .1)  (river . .3))
(r7 (field . .3) (swamp . .4) (town . .1) (lake . .1) (road . .05) (river . .05)) 
(r8 (field . .3) (swamp . .4) (town . .1) (lake . .1) (road . .05) (river . .05)) 
(r9 (field . .1) (swamp . .2) (town . .5) (lake . .1) (road . .05) (river . .05)) 

)) 

R = {< r 1,{< l 1, P (l 1 | r 1) >,...} >,...} 
n 

( j |∀ri ∈ R : ∑ r l P i ) ≤ 1 
j =1	 26 



Language Model


I1 

... 

E1 

E2 

E3E4 

En ... 

... 

... In 

I2 

• Regions have internal and external neighbors.


• Rule for a region looks this: 

<Label, Internal, External, Probability> 

<Field, (I1, I2, ... In), (E1, E2, E3, E4,... En), 0.3> 27 



E1

En...

...

I2

Occluding boundary


E
...


2


E3E4 

...In 

or 
Cloud 

• Regions may be occluded. 

•Rule for a region looks this:

<Field, (*, In), (*, E2, E3, E4,... En), 0.3>
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Structured Regions
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Example rules


FieldField 

Field 

Town R
oad 

River 

Lake 

Swamp 

Swamp 

• P1: <lake, (), (field), 1.0> 

• P2: <field, (lake, *), (road *), 0.33> 
• P3: <field, (*), (*, road, town, river),   0.33> 

• P4: <field, (*), (*, river, swamp),       0.33> 
• P5: <swamp, (*), (* field river),        0.5> 
• P6: <swamp, (*), (* river town road),  0.5> 

• P7: <river, (*), (* field town swamp * swamp field), 1.0> 

• p8: <town, (),  (field road swamp river),  1.0> 
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Supervised Learning
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Smoothing and occlusion


•	 Whenever we generate a rule, we also make rules for 
degenerate cases. 
<Field, (), (E1, E2, E3), p?> 
<Field, (), (*, E2, E3), p?> 
<Field, (), (E1, *, E3), p?> 
<Field, (), (E1, E2, *), p?> 
<Field, (), (*, E3), p?> 
<Field, (), (*, E2), p?>


<Field, (), (*, E1), p?>


•	 Represent grammar as a lattice of approximations 
to the non-occluded rule. 
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(*) Top=1


(Field *)=1 (Road *)=1 (Swamp *)=1 (River *)=1 

(Field Road *)=1 (Field Swamp *)=1(Field River *)=1 (Road Swamp *)=1(Road River *)=1(Swamp River *)=1 

(Field Road Swamp *)=1 (Field Swamp River *)=1 (Field Road River *)=1 (Road Swamp River *)=1 

(Field Road Swamp River)=1 

() Bottom=0 33 



Fields1 Lake 

Fields3 

Road 

Fields3 

Image1 
Fields2 Fields2 Fields1 

Town 

Town 
River 

Lake 

Swamp1 
Swamp1 

Swamp2 
Swamp2 

A successful parse: 
((r4 Lake () (Fields1) p1) (Fields1 (Lake) (Road *) p2) (Fields3 () (River Town Road *) p3) (Town () 
(swamp2 River Field1) p8) (River () (Fields3 Town Swamp2 Swamp1 Fields2 *) p7) (Swamp2 () 
(Town Road River *) p6) (Swamp1 () (River Fields *) p5) (Fields2 () (River Swamp1 *) p4)) 

Probability of image:

P(Lake|r4)P(p1)P(Field|r3)P(p2)P(Field|r2)P(p3)P(Field|r1)P(p4)P(Swamp|r7)P(p5)P(Swamp|r8)P(p6) 
P(River|r6)P(p7)P(Town|r9)P(p8) 34 
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Segmenting the rule sets
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Network Search Parse

•	 Find parses in order or probability. 
•	 Keep sorted list of partial parses (most probably first):


–	 < bindings, unprocessed regions, probability> 

•	 Start with: 
–	 (<(), (r1,r2,r3,r4,r5,r6,r7,r8,r9), 1.0>) 

•	 At each step extend the most probable: 
–	 (<(r2=river, r5=swamp, r8=road, r6=field, r9=town) 


(r2,r3,r4,r5,r6,r7,r8,r9) 0.5> ...)


•	 When applying a rule bound regions must match, unbound 
regions are bound. 

•	 First attempt to extend a parse that has a null “unprocessed 
regions” is the most probably parse. 
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Network Search Performance


.. . 

r1 r2	 r3 r4 ...


•	 At each stage if there are m possible labelings of the 
region, and for each labeling if there are k rules, then for 
an image with n regions the cost of the network search 
parsing algorithm is: 
–	 O((k*m)n) 

•	 Even with only 9 regions, 9 rules, and 6 possible labelings 
per region there are of the order of 1015 candidates. 

•	 Algorithm only terminates on VERY small examples. 
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Monte-Carlo Parse


.. . 

r1 r2	 r3 r4 ... 

•	 Select a complete parse at random as follows: 
(dotimes (i N)


(start-new-parse)

(dolist (r region-list)


(setq l (select-at-random (possible-labels-of r)))

(setq r (select-at-random (rules-that-generate l))))


(store-random-parse))

•	 Most frequently occurring parse will approach the most 

probable parse as N is increased. 
•	 How big does N have to be? 
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Example Monte-Carlo Parse

>> (parse-image-mc *all-regions* *rules* *region-optical-evidence*)

(((L1 . LAKE) (F1 . FIELD) (IM . IMAGE1) (RD . RIVER) 

(S2 . SWAMP) (F3 . ROAD) (TN . TOWN) (F2 . RIVER) ...) NIL 4.2075E-9)


>> (dotimes (i 100) (next-parse-mc))

NIL

>> (first (setq *monte-carlo-parses* (sort *monte-carlo-parses* by-third))) 

(((L1 . LAKE) (IM . IMAGE1) (S2 . SWAMP) (F1 . FIELD) 

(RD . ROAD) (TN . TOWN) (F3 . FIELD) (RV . RIVER) ...) NIL 1.5147E-6)


>> (dotimes (i 100) (next-parse-mc))

NIL

>> (first (setq *monte-carlo-parses* (sort *monte-carlo-parses* by-third))) 

(((F2 . FIELD) (S2 . SWAMP) (IM . IMAGE1) (F1 . FIELD) 

(L1 . LAKE) (S1 . SWAMP) (RV . RIVER) (RD . ROAD) ...) NIL 2.4257475E-6)

>> (dotimes (i 100) (next-parse-mc))

NIL


>> (first (setq *monte-carlo-parses* (sort *monte-carlo-parses* by-third)))

(((F2 . FIELD) (S2 . SWAMP) (IM . IMAGE1) (F1 . FIELD) 

(L1 . LAKE) (S1 . SWAMP) (RV . RIVER) (RD . ROAD) ...) NIL 2.4257475E-6)

>> 
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Monte-Carlo Performance


•	 Iterate until standard deviation < ε 
–	 As each sample is generated compute its probability. 
–	 Compute the standard deviation of the sample probabilities. 

•	 We can make the error arbitrarily small by picking arbitrarily 
small ε. 

•	 Best parse is the one from the sample with the highest 
probability. 
(while (> (standard-deviation samples) epsilon)


(start-new-parse)

(dolist (r region-list)


(setq l (select-at-random (possible-labels-of r)))

(setq r (select-at-random (rules-that-generate l))))


(store-random-parse))
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Monte-Carlo Parsing Performance
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Example of correctly parsed image
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