Visual Interpretation using Probabilistic Grammars

Paul Robertson

Model-Based Vision

- What do the models look like
- Where do the models come from
- How are the models utilized

The Problem

Optimization/Search Problem

- Find the most likely interpretation of the image contents that:
- 1. Identifies the component parts of the image correctly.
- 2. Identifies the scene type.
- 3. Identifies structural relationships between the parts of the image.
- Involves: Segmenting into parts, naming the parts, and relating the parts.

Outline

- Overview of statistical methods used in speech recognition and NLP
- Image Segmentation and Interpretation
 - -image grammars
 - image grammar learning
 - algorithms for parsing patchwork images.

Not any description – the best

Bad parse

Good parse

What's similar/different between image analysis and speech recognition/NLP?

- Similar
 - An input signal must be processed.
 - Segmentation.
 - Identification of components.
 - Structural understanding.
- Dissimilar
 - Text is a valid intermediate goal that separates Speech recognition and NLP. Line drawings are less obviously useful.
 - Structure in images has much more richness.

Speech Recognition and NLP

- Little backward flow
- Stages done separately.
- Similar techniques work well in each of these phases.
- A parallel view can also be applied to image analysis.

Speech Understanding

- Goal: Translate the input signal into a sequence of words.
 - Segment the signal into a sequence of samples.
 - $A = a_1, a_2, \dots, a_m$ $a_i \in A$
 - Find the best words that correspond to the samples based on:
 - An acoustic model.
 - Signal Processing
 - Prototype storage and comparator (identification)
 - A language model.
 - $W = w_1, w_2, ..., w_m$ $w_i \in \mathcal{V}$
 - $W_{opt} = arg max_w P(W|A)$
 - $W_{opt} = arg max_w P(A|W) P(W)$
 - (since P(W|A) = P(A|W) P(W) / P(A) [Bayes])
 - P(A|W) is the acoustic model.
 - P(W) is the language model.

$$\begin{aligned} &\text{language modeling for speech} \\ P(W) &= \prod_{i=1}^{n} P(w_i | w_1, ..., w_{i-1}) \\ P(W) &= \prod_{i=1}^{n} P(w_i | \Phi(w_1, ..., w_{i-1})) \\ P(W) &= \prod_{i=1}^{n} P(w_i | \Phi_{i-1}) \\ P(w_i | w_{i-1}, w_{i-2}) &= f(w_i | w_{i-1}, w_{i-2}) \\ P(w_i | w_{i-1}, w_{i-2}) &= \lambda_3 f(w_i | w_{i-1}, w_{i-2}) + \lambda_2 f(w_i | w_{i-1}) + \lambda_1 f(w_i) \\ \lambda_1 + \lambda_2 + \lambda_3 &= 1 \end{aligned}$$

- Using the above
 - P(W) can be represented as a HMM and solved efficiently using the Viterbi algorithm.
 - The good weights λ_1 , λ_2 , and λ_3 can be computed using the Baum-Welch algorithm.

Natural Language Processing

- Part of correctly *understanding* a sentence comes from correctly *parsing* it.
- Starting with a word list, parsing involves two separable activities:
 - Part of speech tagging.
 - Find the most *probable* assignments of parts of speech.
 - Parsing the words into a tree.
 - Find the most *probable* parse tree.

Part-of-speech tagging

- Goal: Assign part-of-speech tags to each word in the word sequence.
 - Start with the word sequence
 - $\mathbf{W} = \mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m \quad \mathbf{w}_i \in \mathcal{V}$
 - Find the best tags for each word
 - $T = t_1, t_2, ..., t_m \quad t_i \in \mathcal{I}$

$$P(w_{1}, n) = \sum_{t_{1,n+1}} P(w_{1,n}, t_{1,n+1})$$

$$T_{opt} = \arg \max_{t_{1,n}} P(t_{1,n} | w_{1,n})$$

$$T_{opt} = \arg \max_{t_{1,n}} P(t_{1,n}, w_{1,n})$$

$$P(w_{n} | w_{1,n-1}, t_{1,n}) = P(w_{n} | t_{n})$$

$$P(t_{n} | w_{1,n-1}, t_{1,n-1}) = P(t_{n} | t_{n-1})$$

$$P(w_{1,n}) = \sum_{t_{1,n+1}} \prod_{i=1}^{n} P(w_{i} | t_{i}) P(t_{i+1} | t_{i})$$

$$P(w_{1,n}) = \sum_{t_{1,n+1}} \prod_{i=1}^{n} P(w_{i} | t_{i}) P(t_{i+1} | t_{i,t_{i-1}})$$

•T_{opt} is the path the HMM traverses in producing the output (since the states of the HMM are the tags).

[•]Use Viterbi algorithm to find the path.

PCFG's

- Better language models lead to better results.
- Considering the grammar instead of a simple sequence of words, the relationships are more meaningful.
- PCFG is <W, N, N¹, R>
 - W is a set of terminal symbols
 - N is a set of non-terminal symbols
 - N¹ is the starting symbol
 - R is a set of rules.
 - Each rule $N^i \rightarrow RHS$ has an associated probability $P(N^i \rightarrow RHS)$ which is the probability of using this rule to expand N^i
- The probability of a sentence is the sum of the probabilities of all parses.
- Probability of a parse is the product of the probabilities of all the productions used.
- Smoothing necessary for missing rules.

Example PCFG

S	\rightarrow	np vp	0.8				
S	\rightarrow	vp	0.2				
np	\rightarrow	noun	0.4				
np	\rightarrow	noun pp	0.4				
np	\rightarrow	noun np	0.2				
vp	\rightarrow	np vp	0.3				
vp	\rightarrow	np vp	0.3				
vp	\rightarrow	np vp	0.2				
vp	\rightarrow	np vp	0.2				
pp	\rightarrow	prep np	1.0				
pre	$p \rightarrow$	like	1.0				
ver	b→	swat	0.2				
$\texttt{verb} \rightarrow$		flies	0.4				
$\texttt{verb} \rightarrow$		like	0.4				
$noun \rightarrow$		swat	0.1				
$noun \rightarrow$		flies	0.4				
$noun \rightarrow$		ants	0.5				

- Good parse = .2x.2x.4x.4x1.0x1.0x.4x.5 = 0.000256
- Bad parse = .8x.2x.4x.1x.4x.3x.4x.5 = 0.00006144

Why these techniques are dominating language research

- Statistical methods work well
 - The best POS taggers perform close to 97% accuracy compared to human accuracy of 98%.
 - The best statistical parsers are at around 88% vs an estimated 95% for humans.
- Learning from the corpus
 - The grammar can be learned from a representative corpus.
- Basis for comparison
 - The availability of corpora with ground truth enables researchers to compare their performance against other published algorithms/models.
- Performance
 - Most algorithms at runtime are fast.

Build Image Descriptions

Patchwork Parsing

- Use semantic segmentation to produce a set of homogeneous regions
- Based on the contents of the regions and their shape hypothesize region contents.
- Region contents is ambiguous in isolation
 - Use contextual information to reduce ambiguity.
- The image must make sense
 - We must be able to produce a parse for it.
- Our interpretation of the image approximates the *most probable parse*.
 - Success of the picture language model determines whether mostprobable-parse works.
- Do it (nearly) as well as human experts

Segmented image labeling

- The image contains n regions $r_{1,n}$.
- Each region has a set of neighbors $n_{1,n}$.
- $P(r_{1,n})$ is the sum of the disjoint labelings.

$$P(r_{1,n}) = \sum_{l_{1,n}} P(r_{1,n}, l_{1,n})$$

• We wish to find the labeling $L_{1,n}$.

$$L_{1,n} = \arg \max_{l_{1,n}} \prod_{i=1}^{n} P(l_i | r_i, n_i)$$

= $\arg \max_{l_{1,n}} \prod_{i=1}^{n} \frac{P(l_i | r_i)P(n_i | l_i, r_i)}{P(n_i | r_i)}$
= $\arg \max_{l_{1,n}} \prod_{i=1}^{n} \frac{P(l_i | r_i)P(n_i | l_i)}{P(n_i | r_i)}$
= $\arg \max_{l_{1,n}} \prod_{i=1}^{n} P(l_i | r_i)P(n_i | l_i)$

- $P(l_i|r_i)$ is the optical model.
- $P(n_i|l_i)$ is the picture language model.

Segmentation

The optical model

- Filters produce useful features from the original image.
- Semantic Segmentation produces regions.
- Prototype database and comparator produce evidence for labeling each region.

```
(setq *region-optical-evidence*
```

'((r1	(field	•	.5)	(swamp	•	.2)	(town	•	.1)	(lake	•	.1)	(road	•	.05)	(river	•	.05))
(r2	(field	•	.5)	(swamp	•	.2)	(town	•	.1)	(lake	•	.1)	(road	•	.05)	(river	•	.05))
(r3	(field	•	.5)	(swamp	•	.2)	(town	•	.1)	(lake	•	.1)	(road	•	.05)	(river	•	.05))
(r4	(field	•	.1)	(swamp	•	.1)	(town	•	.1)	(lake	•	.3)	(road	•	.1)	(river	•	.3))
(r5	(field	•	.1)	(swamp	•	.1)	(town	•	.3)	(lake	•	.1)	(road	•	.3)	(river	•	.1))
(r6	(field	•	.1)	(swamp	•	.1)	(town	•	.1)	(lake	•	.3)	(road	•	.1)	(river	•	.3))
(r7	(field	•	.3)	(swamp	•	.4)	(town	•	.1)	(lake	•	.1)	(road	•	.05)	(river	•	.05))
(r8	(field	•	.3)	(swamp	•	.4)	(town	•	.1)	(lake	•	.1)	(road	•	.05)	(river	•	.05))
(r9	(field	•	.1)	(swamp	•	.2)	(town	•	.5)	(lake	•	.1)	(road	•	.05)	(river	•	.05))
))																		

$$R = \{ < r_1, \{ < l_1, P(l_1 | r_1) >, ... \} >, ... \}$$
$$\forall r_i \in R : \sum_{j=1}^n P(l_j | r_i) \le 1$$

- Regions have internal and external neighbors.
- Rule for a region looks this:

<Label, Internal, External, Probability>

<Field, $(I_1, I_2, ..., I_n)$, $(E_1, E_2, E_3, E_4, ..., E_n)$, 0.3>

- Regions may be occluded.
- •Rule for a region looks this:
- <Field, (*, I_n), (*, E₂, E₃, E₄,... E_n), 0.3>

Structured Regions

Example rules

P_1: <lake, (), (field), 1.0>
P_2: <field, (lake, *), (road *), 0.33>
P_3: <field, (*), (*, road, town, river), 0.33>
P_4: <field, (*), (*, river, swamp), 0.33>
P_5: <swamp, (*), (* field river), 0.5>
P_6: <swamp, (*), (* river town road), 0.5>
P_7: <river, (*), (* field town swamp * swamp field), 1.0>
P_8: <town, (), (field road swamp river), 1.0>

Supervised Learning

Smoothing and occlusion

• Whenever we generate a rule, we also make rules for degenerate cases.

<Field, (), (E_1, E_2, E_3) , p?> <Field, (), (*, E_2, E_3), p?> <Field, (), ($E_1, *, E_3$), p?> <Field, (), ($E_1, E_2, *$), p?> <Field, (), (*, E_3), p?> <Field, (), (*, E_2), p?> <Field, (), (*, E_1), p?>

• Represent grammar as a lattice of approximations to the non-occluded rule.

A successful parse:

((r4 Lake () (Fields1) p1) (Fields1 (Lake) (Road *) p2) (Fields3 () (River Town Road *) p3) (Town () (swamp2 River Field1) p8) (River () (Fields3 Town Swamp2 Swamp1 Fields2 *) p7) (Swamp2 () (Town Road River *) p6) (Swamp1 () (River Fields *) p5) (Fields2 () (River Swamp1 *) p4))

Probability of image:

 $P(Lake|r_4)P(p_1)P(Field|r_3)P(p_2)P(Field|r_2)P(p_3)P(Field|r_1)P(p_4)P(Swamp|r_7)P(p_5)P(Swamp|r_8)P(p_6)$ $P(River|r_6)P(p_7)P(Town|r_9)P(p_8)$ 34

Segmenting the rule sets

Network Search Parse

- Find parses in order or probability.
- Keep sorted list of partial parses (most probably first):
 - < bindings, unprocessed regions, probability>
- Start with:
 - (<(), (r1,r2,r3,r4,r5,r6,r7,r8,r9), 1.0>)
- At each step extend the most probable:
 - (<(r2=river, r5=swamp, r8=road, r6=field, r9=town) (r2,r3,r4,r5,r6,r7,r8,r9) 0.5> ...)
- When applying a rule bound regions must match, unbound regions are bound.
- First attempt to extend a parse that has a null "unprocessed regions" is the most probably parse.

Network Search Performance

- At each stage if there are m possible labelings of the region, and for each labeling if there are k rules, then for an image with n regions the cost of the network search parsing algorithm is:
 - $O((k^*m)^n)$
- Even with only 9 regions, 9 rules, and 6 possible labelings per region there are of the order of 10¹⁵ candidates.
- Algorithm only terminates on VERY small examples.

Monte-Carlo Parse

- Select a complete parse at random as follows: (dotimes (i N)
 - (start-new-parse)
 - (dolist (r region-list)
 - (setq l (select-at-random (possible-labels-of r)))

(setq r (select-at-random (rules-that-generate l))))

(store-random-parse))

- Most frequently occurring parse will approach the most probable parse as N is increased.
- How big does N have to be?

Example Monte-Carlo Parse

>> (parse-image-mc *all-regions* *rules* *region-optical-evidence*)
(((L1 . LAKE) (F1 . FIELD) (IM . IMAGE1) (RD . RIVER)
(S2 . SWAMP) (F3 . ROAD) (TN . TOWN) (F2 . RIVER) ...) NIL 4.2075E-9)

>> (dotimes (i 100) (next-parse-mc))

NIL

>> (first (setq *monte-carlo-parses* (sort *monte-carlo-parses* by-third)))
(((L1 . LAKE) (IM . IMAGE1) (S2 . SWAMP) (F1 . FIELD)
(RD . ROAD) (TN . TOWN) (F3 . FIELD) (RV . RIVER) ...) NIL 1.5147E-6)

>> (dotimes (i 100) (next-parse-mc))

NIL

>> (first (setq *monte-carlo-parses* (sort *monte-carlo-parses* by-third)))
(((F2 . FIELD) (S2 . SWAMP) (IM . IMAGE1) (F1 . FIELD)
(L1 . LAKE) (S1 . SWAMP) (RV . RIVER) (RD . ROAD) ...) NIL 2.4257475E-6)
>> (dotimes (i 100) (next-parse-mc))
NIL

>> (first (setq *monte-carlo-parses* (sort *monte-carlo-parses* by-third)))
(((F2 . FIELD) (S2 . SWAMP) (IM . IMAGE1) (F1 . FIELD)
(L1 . LAKE) (S1 . SWAMP) (RV . RIVER) (RD . ROAD) ...) NIL 2.4257475E-6) 39
>>

Monte-Carlo Performance

- Iterate until standard deviation $< \epsilon$
 - As each sample is generated compute its probability.
 - Compute the standard deviation of the sample probabilities.
- We can make the error arbitrarily small by picking arbitrarily small ε.
- Best parse is the one from the sample with the highest probability.

```
(while (> (standard-deviation samples) epsilon)
```

```
(start-new-parse)
```

```
(dolist (r region-list)
```

(setq l (select-at-random (possible-labels-of r)))

```
(setq r (select-at-random (rules-that-generate l))))
```

```
(store-random-parse))
```

Monte-Carlo Parsing Performance

Example of correctly parsed image

