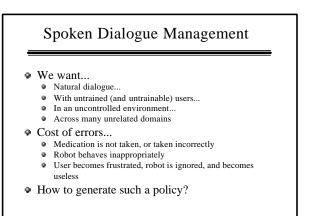
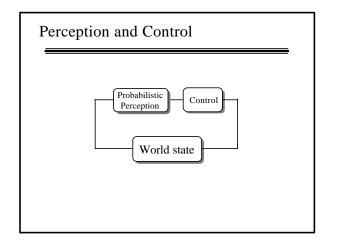
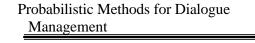


Predicted Health Care Needs

- By 2008, need 450,000 additional nurses:
 - Monitoring and walking assistance
 30 % of adults 65 years and older have fallen this year
 - Cost of preventable falls: Alexander 2001 \$32 Billion US/year
 - Intelligent reminding
 - Cost of medication non-compliance: \$1 Billion US/year Dunbar-Jacobs 2000







- Markov Decision Processes model action uncertainty
 - (Levin et. al, 1998, Goddeau & Pineau, 2000)
- Many techniques for learning optimal policies, especially reinforcement learning
 - (Singh et al. 1999, Litman et al. 2000, Walker 2000)

Markov Decision Processes

- A Markov Decision Process is given formally by the following: $\begin{array}{l} a set of states S=\{s_1,s_2,...,s_n\} \\ a set of actions A=\{a_1,a_2,...,a_m\} \\ a set of transition probabilities T(s_i,a,s_j)=p(s_j \mid a,s_i) \end{array}$

 - a set of rewards R: S × A? ℜ a discount factor γ⊂[0, 1] an initial state s₀∈ S
- Bellman's equation (Bellman, 1957) computes the expected reward for each state recursively,

$$J(\mathbf{s}_i) = \max_{a} \left(R(\mathbf{s}_i, a) + \gamma \sum_{j=1}^{N} p(\mathbf{s}_j | \mathbf{s}_i, a) \cdot J(\mathbf{s}_j) \right)$$

9 and determines the policy that maximises the expected, discounted reward

The POMDP in Dialogue Management

- State: Represents desire of user Q. e.g.want_tv, want_meds
- This state is unobservable to the dialogue system 9
- Observations: Utterances from speech recogniser a,
- e.g. .I want to take my pills now. The system must infer the user's state from the possibly noisy or Q.
- ambiguous observations Where do the emission probabilities come from? Q.
 - At planning time, from a prior model
 At run time, from the speech recognition engine

The MDP in Dialogue Management

- State: Represents desire of user e.g. want_tv, want_meds
- Assume utterances from speech recogniser give state

e.g. I want to take my pills now.

- Actions are: robot motion, speech acts
- Reward: maximised for satisfying user task

Markov Decision Processes

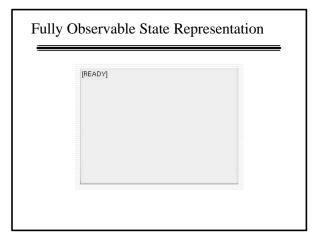
- Model the world as different states the system can be in Q. e.g. current state of completion of a form
- Each action moves to some new state with probability p(i; j) Φ.
- Observation from user determines posterior state

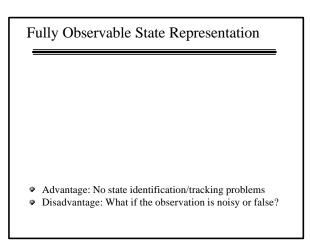
Markov Decision Processes

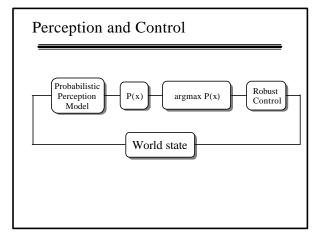
- Optimal policy maximizes expected future (discounted) reward
- Policy found using value iteration

Markov Decision Processes

- Since we can compute a policy that maximises the expected reward...
- then if we have ...
- a reasonable reward function
- a reasonable transition model
- Do we get behaviour that satisfies the user?

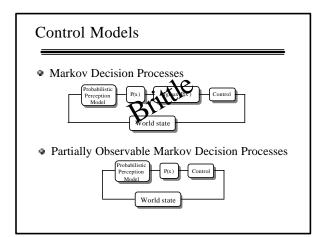


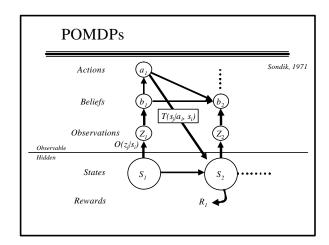


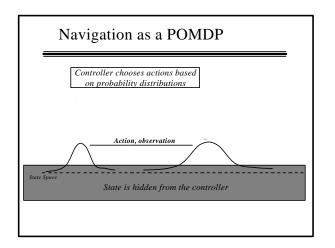


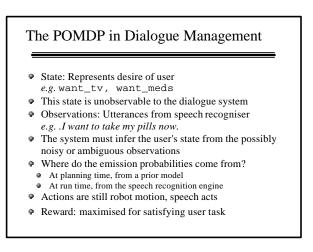
Talk Outline

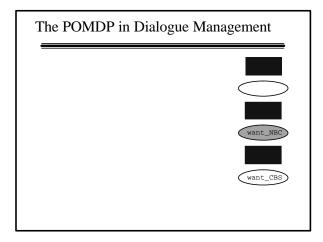
- Robots in the real world
- Partially Observable Markov Decision Processes
- Solving large POMDPs
- Deployed POMDPs

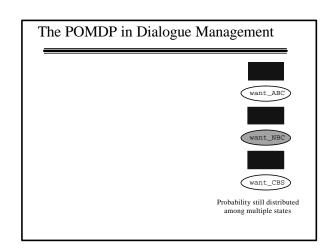


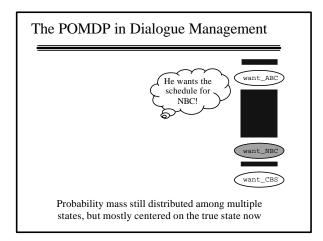


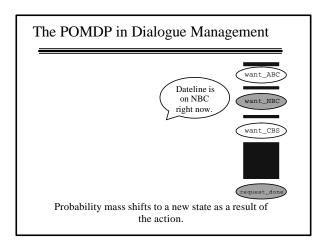


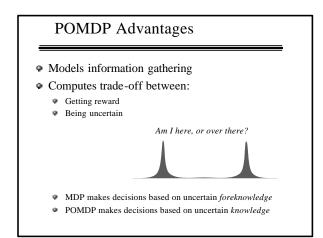


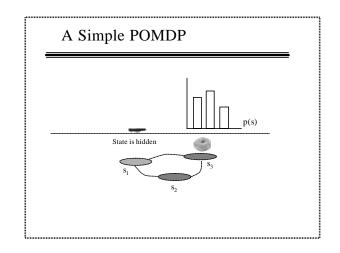


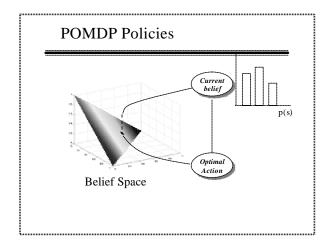


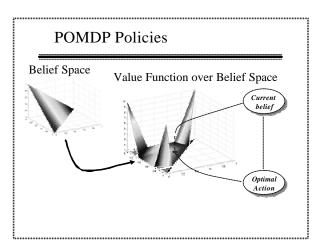


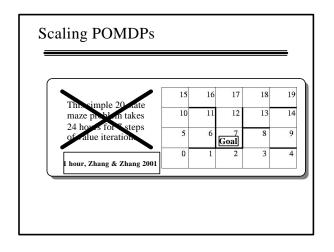


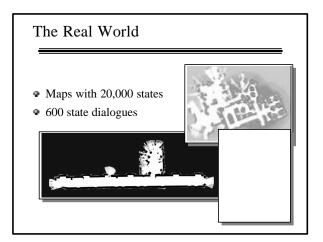


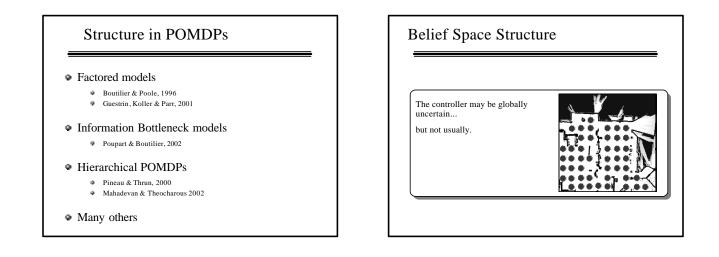


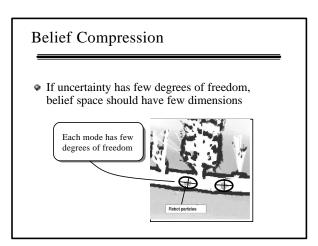


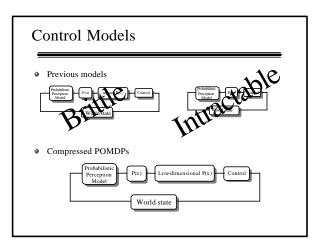










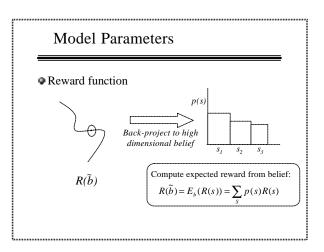


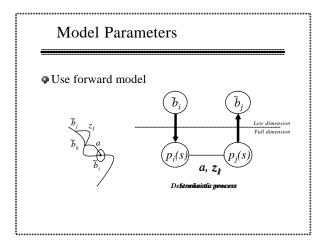
The Augmented MDP

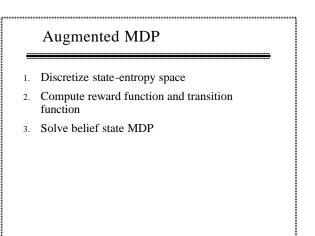
Represent beliefs using

$$\widetilde{b} = \left\langle \operatorname*{arg\,max}_{s} b(s); H(b) \right\rangle$$
$$H(b) = -\sum_{i=1}^{N} p(s_{i}) \log_{2} p(s_{i})$$

• Discretise into 2-dimensional belief space MDP

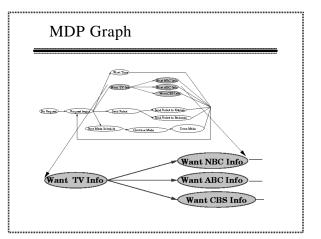




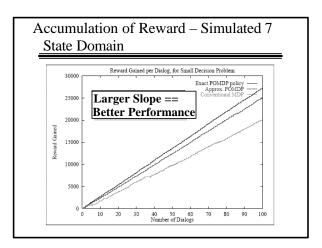


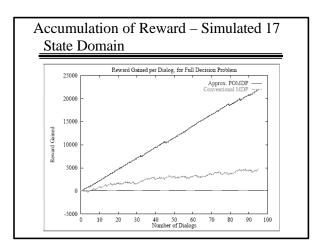
Nursebot Domain

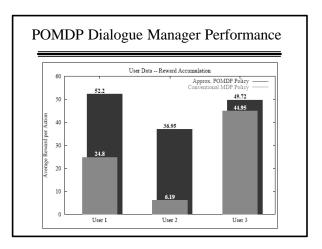
- Medication scheduling
- Time and place tracking
- Appointment scheduling
- Simple outside knowledge e.g. weather
- Simple entertainment e.g. TV schedules
- Sphinx speech recognition, Festival speech synthesis

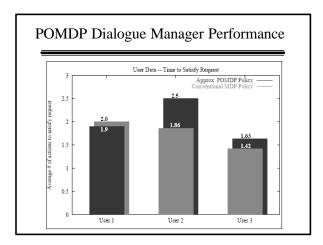


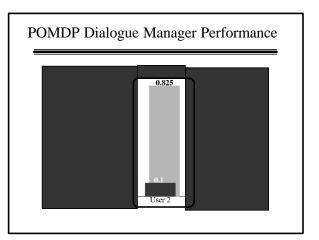
Observation	True State	Belief Entropy	Action	Reward
hello	request begun	0.406	say hello	100
what is like	start meds	2.735	ask repeat	-100
what time is it for will the	want time	0.490	say time	100
was on abc	want tv	1.176	ask which station	-1
was on abc	want abc	0.886	say abc	100
what is on nbc	want nbc	1.375	confirm channel nbc	-1
yes	want nbc	0.062	say nbc	100
go to the that pretty good what	send robot	0.864	ask robot where	-1
that that hello be	send robot bedroom	1.839	confirm robot place	-1
the bedroom any i	send robot bedroom	0.194	go to bedroom	100
go it eight a hello	send robot	1.110	ask robot where	-1
the kitchen hello	send robot kitchen	1.184	go to kitchen	100

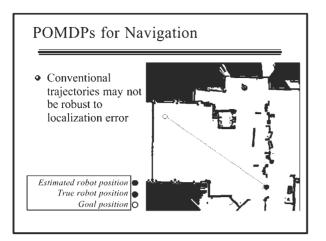


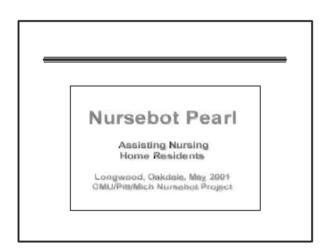




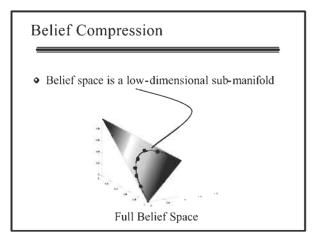


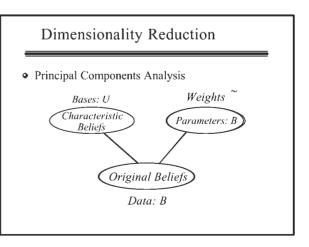


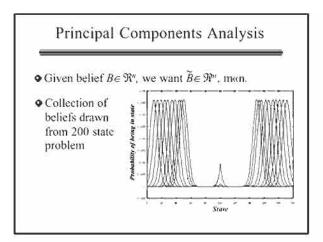


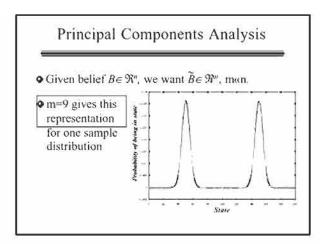


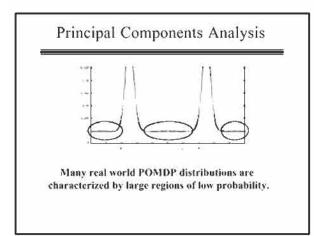
- Robots in the real world
- Partially Observable Markov Decision Processes
- Solving large POMDPs
- Deployed POMDPs

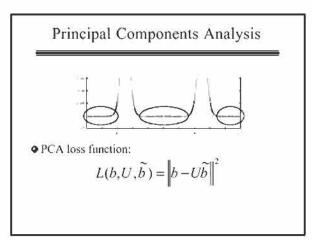


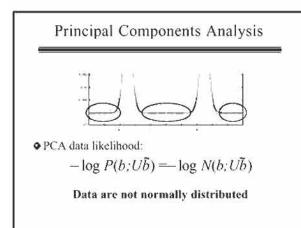


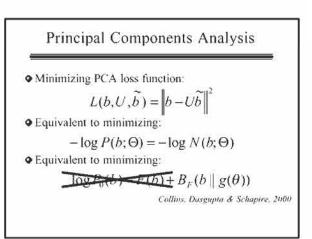


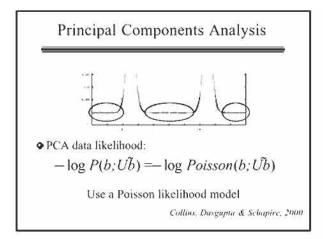


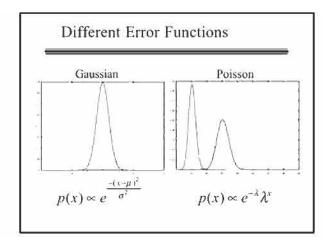












Solving for Bases and Parameters

• Bregman Divergence for Poisson error model: $B_F(b \parallel U\widetilde{b}) = e^{(t\widetilde{h})} - b \circ U\widetilde{b}$

Solving for Bases and Parameters
• Bregman Divergence for Poisson error model:

$$B_{F}(b \parallel U\widetilde{b}) = e^{(U\widetilde{b})} - b \circ U\widetilde{b}$$

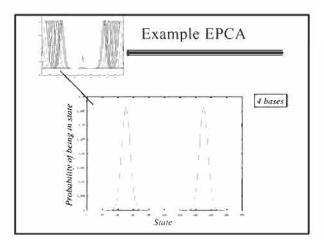
$$\frac{\partial B_{F}(b \parallel U\widetilde{b})}{\partial U} = \frac{\partial}{\partial U}F(U\widetilde{b}) - b \circ U\widetilde{b}$$

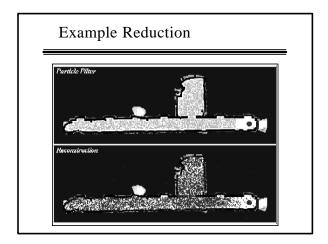
$$= e^{(U\widetilde{b})}b^{T} - b\widetilde{b}^{T}$$

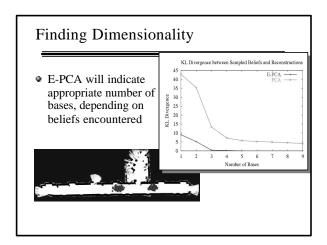
$$\frac{\partial B_{F}(b \parallel U\widetilde{b})}{\partial \widetilde{b}} = \frac{\partial}{\partial \widetilde{b}}F(U\widetilde{b}) - b \circ U\widetilde{b}$$

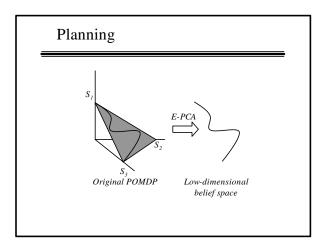
$$= U^{T}e^{(U\widetilde{b})} - U^{T}b$$

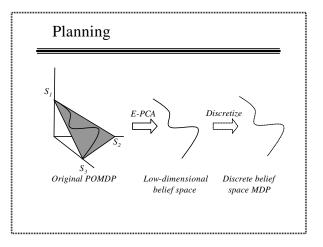
Solving for Bases and Parameters • Loss function for Poisson error model: $-\log(x;e^{\lambda}) \propto e^{\lambda} - x\lambda$ $\arg\min - \log(b;U\widetilde{b}) = \arg\min e^{(U\widetilde{b})} - b \circ U\widetilde{b}$ • Equivalent to minimising: $\arg\min \parallel D^{-1/2}(b - \exp(U\widetilde{b})) \parallel$

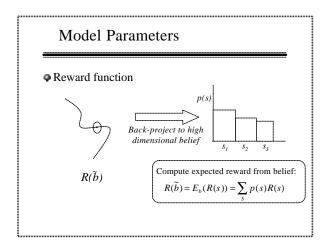


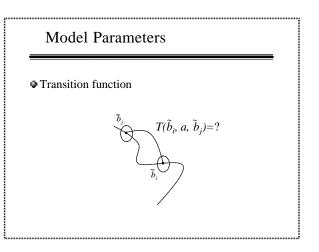


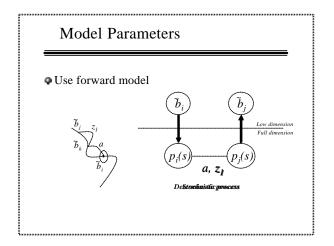


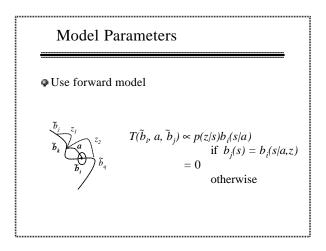






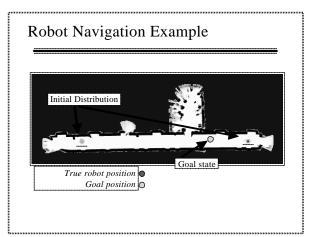


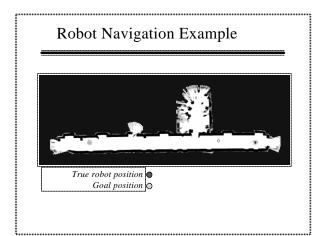


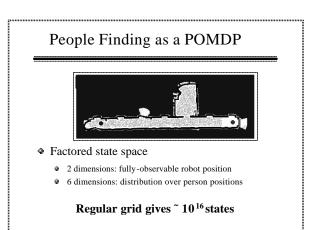


E-PCA POMDPs

- 1. Collect sample beliefs
- 2. Find low-dimensional belief representation
- 3. Discretize
- 4. Compute reward function and transition function
- 5. Solve belief state MDP

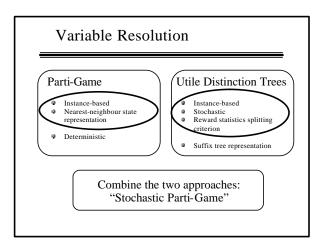


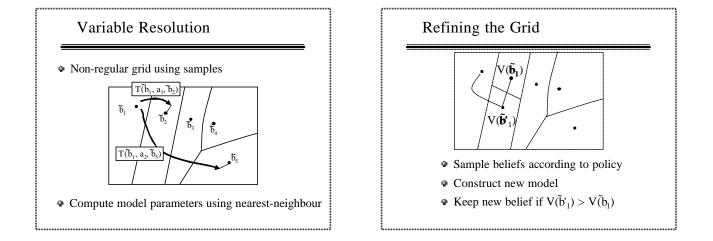


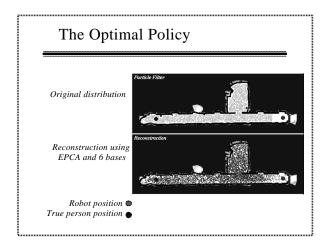


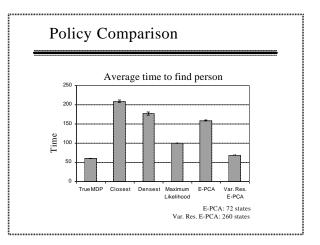
Variable Resolution Discretization

- Variable Resolution Dynamic Programming (1991)
- Parti-game (Moore, 1993)
- Variable Resolution Discretization (Munos & Moore, 2000)
- POMDP Grid-based Approximations (Hauskrecht, 2001)
- Improved POMDP Grid-based Approximations (Zhou & Hansen, 2001)









Summary

- POMDPs for robotic control improve system performance
- POMDPs can scale to real problems
- Belief spaces are structured
 - Compress to low-dimensional statistics
 - Find controller for low-dimensional space

Open Problems

- Better integration and modelling of people
- Better spatial and temporal models
- Integrating learning into control models
- Integrating control into learning models