
Control Sequencer

Deductive Controller

l Program

 Model-based Program

Mode
Estimation

Mode
Reconfiguration

Executes concurrently
Preempts
Queries (hidden) states
Asserts (hidden) state

Fault Aware Systems:
Model-based Programming

and Diagnosis
Outline

� Fault Aware Systems Through
Model-based Programming
� Diagnosis as Detective Work
� Model-based Diagnosis

Brian C. Williams
16.412J/6.834J
March 8th, 2004

courtesy of JPL Brian C. Williams, copyright 2000

Mars Polar Lander Failure

Programmers are overwhelmed
by the bookkeeping of reasoning

about unlikely hidden states

Leading Diagnosis:

• Legs deployed during descent.

• Noise spike on leg sensors
latched by software monitors.

• Laser altimeter registers 50ft.

• Begins polling leg monitors to
determine touch down.

• Latched noise spike read as
touchdown.

• Engine shutdown at ~50ft.

Fault Aware Systems:
Create embedded languages
That reason and coordinate

on the fly from models

Like Storyboards, Model-based Programs
Specify The Evolution of Abstract States

Embedded programs evolve actions
by interacting with plant sensors
and actuators:

• Read sensors

• Set actuators

Embedded Program

S
Plant

Obs Cntrl

Model-based programs evolve
abstract states through direct
interaction:

• Read abstract state

• Write abstract state

Model-based
Embedded Program

S
Plant

Model-based executive maps
between state and sensors/actuators.

S’
Model-based Executive

Obs Cntrl

Programmer maps between state
and sensors/actuators.

Descent Example

EngineA EngineB

Science Camera

Turn camera off and engine on

EngineA EngineB

Science Camera

System Model

CommandsObservations

Contro

Plant

Titan Model-based ExecutiveRMPL

State goalsState estimates

Generates target goal states
conditioned on state estimates

Tracks
likely

plant states

Tracks least
cost goal states

z

z

z

z

OrbitInsert()::
(do-watching ((EngineA = Firing) OR

(EngineB = Firing))
(parallel

(EngineA = Standby)
(EngineB = Standby)
(Camera = Off)
(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Firing)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Firing))))

ClosedClosed

ValveValve
OpenOpen UnUn-

knownknown

StuckStuck
closedclosed

OpenOpen CloseClose

0. 010. 01

0. 010. 01

0.010.01

0.010.01

inflow iff outflow

1

State-based Execution: The model-based program sets the
state to thrusting, and the deductive controller

Control Sequencer

Deductive Controller

Possible Behaviors
Visualized by a Trellis Diagram

Determines that valves
on the backup engine

will achieve thrust, and
plans needed actions.

Deduces that a valve
failed - stuck closed

Plans actions
to open

six valves

Fuel tankFuel tankOxidizer tankOxidizer tank

Deduces that
thrust is off, and

the engine is healthy
Identify Modes

Diagnose Failure Modes

Reconfigure Modes

Repair Modes

Model-based Programs

state trajectories:
Control program specifies OrbitInsert()::

(do-watching ((EngineA = Thrusting) OR

• fires one of two engines

• sets both engines to ‘standby’

• prior to firing engine, camera must be
turned off to avoid plume contamination

• in case of primary engine failure, fire
backup engine instead

Plant Model describes
behavior of each component:
– Nominal and Off nominal
– qualitative constraints
– likelihoods and costs

(EngineB = Thrusting))
(parallel

(EngineA = Standby)

(EngineB = Standby)

(Camera = Off)

(do-watching (EngineA = Failed)

(when-donext ((EngineA = Standby) AND
(Camera = Off))

(EngineA = Thrusting)))
(when-donext ((EngineA = Failed) AND

(EngineB = Standby) AND
(Camera = Off))

(EngineB = Thrusting))))

Plant Model

StandbyStandby

Engine ModelEngine Model

OffOff

FailedFailed

FiringFiring

component modes…

(thr ust = f ull) AND
(powe r_in =nomina l)

(thr ust =ze ro) AND
(powe r_in =ze ro)

(thr ust =ze ro) AND
(powe r_in =nomina l)

described by finite domain constraints on variables…

deterministic and probabilistic transitions

offoff-
cmdcmd

standbystandby-
cmdcmd

0.010.01

0.010.01
standbystandby-

cmdcmd
firefire-
cmdcmd

cost/reward

0 v

0 v

2 kv

2 kv

one per component … operating concurrently

OnOn

Camera ModelCamera Model

OffOff

turnoffturnoff-
cmdcmd

turnonturnon-
cmdcmd

(powe r_in =ze ro) AND
(shutte r =c lo sed)

(powe r_in =nomina l) AND
(shutte r =open)

0 v

20 v

0.010.01

0.010.01

0 v

System Model

Commands
Observations

Control Program

Plant

Titan Model-based ExecutiveRMPL Model-based Program

State goalsState estimates

Control Sequencer:
Generates goal states

conditioned on state estimates

Mode
Estimation:

Tracks likely
States

Mode
Reconfiguration:
Tracks least-cost

state goals

z Executes concurrently
z Preempts
z Asserts and queries states
z Chooses based on reward

Fire backup
engine

Valve fails
stuck closed

S T

X0 X1 XN-1 XN

S T

X0 X1 XN-1 XN

least cost reachable
goal stateFirst ActionCurrent Belief State

Modeling Complex Behaviors through
Probabilistic Constraint Automata

• Complex, discrete behaviors

• modeled through concurrency, hierarchy and timed transitions.

• Anomalies and uncertainty

• modeled by probabilistic transitions

• Physical interactions

• modeled by discrete and continuous constraints

StandbyStandby

Engine ModelEngine Model
OffOff

FailedFailed

offoff -
cmdcmd

standbystandby-
cmdcmd

0.010.01

(thrust = full) AND
(power_in = nominal)

FiringFiring

0.010.01

standbystandby-
cmdcmd

firefire-
cmdcmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

OnOn

Camera ModelCamera Model
OffOff

turnoffturnoff -
cmdcmd

turnonturnon-
cmdcmd

(power_in = zero)
AND

(shutter = closed)

(power_in = nominal)
AND

(shutter = open)

0 v

2 kv

2 kv

0 v

0 v

20 v

0.010.01

0.010.01

0 v

The Plant’s BehaviorThe Plant’s Behavior

S T

X0 X1 XN-1 XN

•Assigns a value to each
variable (e.g.,3,000 vars).
•Consistent with all state
constraints (e.g., 12,000).

•A set of concurrent transitions,
one per automata (e.g., 80).
•Previous & Next states
consistent with source & target
of transitions

2

arg max PT(m’)

s.t. M(m’) ^ O(m’) is satisfiable

3

Deductive Controller

Control Sequencer

Deductive Controller

Possible Behaviors
Visualized by a Trellis Diagram

Deductive Controller

Commands
Observations

Plant

State goalsState estimates

Mode
Estimation:

Tracks likely
States

Mode
Reconfiguration:
Tracks least-cost

state goals

Fire backup
engine

Valve fails
stuck closed

S T

X0 X1 XN-1 XN

S T

X0 X1 XN-1 XN

least cost reachable
goal stateFirst ActionCurrent Belief State

Optimal CSP:

arg min f(x)

s.t. C(x) is satisfiable

D(x) is unsatisfiable

arg min RT*(m’)

s.t. M(m’) entails G(m’)

s.t. M(m’) is satisfiable

System Model

Commands
Observations

Control Program

Plant

Titan Model-based ExecutiveRMPL Model-based Program

State goalsState estimates

Control Sequencer:
Generates goal states

conditioned on state estimates

Mode
Estimation:

Tracks likely
States

Mode
Reconfiguration:
Tracks least-cost

state goals

z Executes concurrently
z Preempts
z Asserts and queries states
z Chooses based on reward

Fire backup
engine

Valve fails
stuck closed

S T

X0 X1 XN-1 XN

S T

X0 X1 XN-1 XN

least cost reachable
goal stateFirst ActionCurrent Belief State

Modeling Complex Behaviors through
Probabilistic Constraint Automata

• Complex, discrete behaviors

• modeled through concurrency, hierarchy and timed transitions.

• Anomalies and uncertainty

• modeled by probabilistic transitions

• Physical interactions

• modeled by discrete and continuous constraints

StandbyStandby

Engine ModelEngine Model
OffOff

FailedFailed

offoff -
cmdcmd

standbystandby-
cmdcmd

0.010.01

(thrust = full) AND
(power_in = nominal)

FiringFiring

0.010.01

standbystandby-
cmdcmd

firefire-
cmdcmd

(thrust = zero) AND
(power_in = zero)

(thrust = zero) AND
(power_in = nominal)

OnOn

Camera ModelCamera Model
OffOff

turnoffturnoff -
cmdcmd

turnonturnon-
cmdcmd

(power_in = zero)
AND

(shutter = closed)

(power_in = nominal)
AND

(shutter = open)

0 v

2 kv

2 kv

0 v

0 v

20 v

0.010.01

0.010.01

0 v

The Plant’s BehaviorThe Plant’s Behavior

S T

X0 X1 XN-1 XN

•Assigns a value to each
variable (e.g.,3,000 vars).
•Consistent with all state
constraints (e.g., 12,000).

•A set of concurrent transitions,
one per automata (e.g., 80).
•Previous & Next states
consistent with source & target
of transitions

Commands
Observations

Plant

State goalsState estimates

Mode
Estimation:

Tracks likely
States

Mode
Reconfiguration:
Tracks least-cost

state goals

Fire backup
engine

Valve fails
stuck closed

S T

X0 X1 XN-1 XN

S T

X0 X1 XN-1 XN

least cost reachable
goal stateFirst ActionCurrent Belief State

Optimal CSP:

arg min f(x)

s.t. C(x) is satisfiable

D(x) is unsatisfiable

arg max PT(m’)

s.t. M(m’) ^ O(m’) is satisfiable

arg min RT*(m’)

s.t. M(m’) entails G(m’)

s.t. M(m’) is satisfiable
Outline

� Fault Aware Systems Through
Model-based Programming
� Diagnosis as Detective Work
� Model-based Diagnosis

b

Issue 1: Handling Hidden Failures Requires
Reasoning from a Model: STS-93

Symptoms:
• Engine temp sensor high
• LOX level low
• GN&C detects low thrust
• H2 level possibly low

Problem: Liquid hydrogen leak

Effect:
• LH2 used to cool engine
• Engine runs hot
• Consumes more LOX

Compare Most Likely Hypothesis
to Observations

Main

Fuel tank

Engines

Helium tank

Oxidizer tank
Flow1 = zero Pressure2= nominal

Pressure1 = nominal

Acceleration = zero

It is most likely that all components are okay.

Leap to the Next Most Likely Hypothesis
that Resolves the Conflict

Oxidizer tank

Flow 1= zero

Main

Helium tank

Fuel tank

Engines

The next hypothesis must remove the conflict

Model- ased Diagnosis as
Conflict-directed Best First Search

When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

- Sherlock Holmes. The Sign of the Four.

1. Test Hypothesis
2. If Inconsistent, learn reason for inconsistency

(a Conflict).
3. Use conflicts to leap over similarly infeasible options

to next best hypothesis.

Isolate Conflicting Information

Main

Fuel tank

Engines

Helium tank

Oxidizer tank

Flow 1= zero

The red component modes conflict with the model and observations.

New Hypothesis Exposes Additional Conflicts

Main

Fuel tank

Engines

Helium tank

Oxidizer tank
Pressure1 = nominal Pressure2= nominal

Acceleration = zero

Another conflict, try removing both

4

Final Hypothesis Resolves all Conflicts

Or1

Helium tank

Pressure1 = nominal Pressure2= nominal
Flow1 = zero Flow2 = positive

Acceleration = zero

Main

Fuel tank Oxidizer tank

Engines

Implementation: Conflict-directed A* search.

Outline

�
Model-based Programming
� Diagnosis as Detective Work
� Model-based Diagnosis

Fault Aware Systems Through

i
model

.

11

1O

O

A

A

A

B
C
D

E

F

G

X

Y

Z

1

1
1
1

0

0

1

O

1

1

i
model

.

11

1

Or1

Or2

Or3

A

B
C
D

E

F

G

X

Y

Z

1

1
1
1

0

0

1
1

1

Model-based Diagnosis

Given a system w th symptomatic behavior and a
of the system, find diagnoses that account

for symptoms
Symptom

Given a system w th symptomatic behavior and a
of the system, find diagnoses that account

for symptoms
Symptom

And1

And2

Model-based Diagnosis

1.
2.

Desi :
•
•

l

Issue 2: Failures are Often Novel:

/

Diagnosis as
Hypothesis Testing

Generate candidates, given symptoms.
Test if candidates account for all symptoms.

red Properties
Set of diagnoses should be complete.
Set of diagnoses should consider all
availab e information.

Mars Observer: Explosion due to oxidizer fuel leakage?

5

ith

l
1

1

1Or1

Or2

Or3

A

B
C
D

E

1

1
1
1

0

F

G

X

Y

Z

0

1

ith

l i
1

1

1Or1

Or2

Or3

A

B
C
D

E

1

1
1
1

0

F

G

X

Y

Z

0

1

Issue 2: How Should Diagnoses
Account for Novel Failures?
Consistency-based Diagnosis: Given symptoms,

find diagnoses that are consistent w symptoms.
Suspending Constraints: Make no presumptions

about fau ty component behavior.
Symptom

And1

And2

Consistency-based Diagnosis: Given symptoms,
find diagnoses that are consistent w symptoms.

Suspending Constraints: Make no presumptions
about fau ty component behav or.

Symptom

And1

And2

Issue 2: How Should Diagnoses
Account for Novel Failures?

ith

l
1

1

Or1

Or2

Or3

A

B
C
D

E

1

1
1
1

0

F

G

X

Y

Z

0

1

•

Î
Î

Î

Î

APOLLO 13

Consistency-based Diagnosis: Given symptoms,
find diagnoses that are consistent w symptoms.

Suspending Constraints: Make no presumptions
about fau ty component behavior.

And1

And2

Issue 2: How Should Diagnoses
Account for Novel Failures?

Issue 3: Multiple Faults Occur

courtesy of NASA

three shorts, tank-line
and pressure jacket
burst, panel flies off.

Divide & Conquer
Diagnose each

symptom.
Summarize (conflicts)
Combine

�

3

2
2
3

3

M1

M2

M3

A1

A2

A

B
C
D

E

F

G

X

Y

Z

10� G(i):

� U(i): 12

Diagnosis identifies Diagnosis identifies All

� G(i):

� U(i):

� idate consistent wi

� i
Î i ll i

3

2
2
3

3

M1

M3

A1

A

B
C
D

E

F

G

X

Y

Z

10

12

Candidate: Assignment to all component modes.

Adder(i):

Out(i) = In1(i)+In2(i)

consistent modes

Candidate = {A1=G, A2=G, M1=G, M2=G, M3=G}

sets of consistent modes
Adder(i):

Out(i) = In1(i)+In2(i)

Diagnosis D: Cand th model Phi and
observables OBS.

As more constraints are relaxed, candidates are more easily sat sfied.
Typ ca y an exponential number of cand dates.

Diagnosis = {A1=G, A2=U, M1=G, M2=U, M3=G}

6

?
?3

2
2
3

3

M1

M3

A1

A

B
C
D

E

F

G

X

Y

Z

10

12?

}

→

•

“Smallest” sets of modes that remove all symptoms

Kernel Diagnosis = {A2=U, M2=U

Representing Diagnoses
Compactly: Kernel Diagnoses

Every candidate that is a subset of a kernel diagnosis
is a diagnosis.

Testing Consistency
Propositional Logic
• DPLL Sat algorithm
• Unit propagation (incomplete)

•Finite Domain Constraints
• Backtrack Search w Forward Checking, …
• AC-3/Waltz constraint propagation (incomplete)

Algebraic Constraints
• Sussman/Steele Constraint Propagation:

• Propagate newly assigned values through
equations mentioning variables.
• To propagate, use assigned values of constraint to
deduce unknown value(s) of constraint.

X ∈ ∨ X=0
¬X=1∨ ¬X=0

¬) ∨ ¬) ∨ Out(i)=1
¬) ∨ ¬) ∨ Out(i)=1
¬) ∨ ¬) ∨ ¬) ∨ Out(i)

And(i):
�

Out(()
� U(i):

Or(i):
�

(i)
� U(i):

¬) ∨ ¬) ∨ Out(i)=0
¬) ∨ ¬) ∨ Out(i)=0
¬) ∨ ¬) ∨ ¬) ∨ Out(i)

And(i):
�

Out(()
� U(i):

� Assignment to O
� i: Assi
� i:

Di ∧ Obs ∧) .

1

1
1
1

0

Or1

Or3

And1

A

B
C
D

E

F

G

X

Y

Z

0

1

O3=G}

� l

{1,0} X=1

Encoding Models In Propositional Logic

(i=G (In1(i)=1
(i=G (In2(i)=1
(i=G (In1(i)=0 (In2(i)=0 =0

G(i):
i) = In1 i) AND In2(i

G(i):
Out i) = In1(i) OR In2(

(i=G (In1(i)=0
(i=G (In2(i)=0
(i=G (In1(i)=1 (In2(i)=1 =1

Summary: Consistency-based Diagnosis

G(i):
i) = In1 i) AND In2(i

Obs:
Candidate C gnment of modes to X
Diagnosis D A candidate such that

C(X,Y is satisfiable

Diagnosis = {A1=G, A2=U O1=G, O2=U,

ALL components have
“unknown Mode” U,
Whose assignment is
never mentioned in C

Component Mode + Structure:

Outline

Model-based Diagnosis
�

� Generating Kernels from Conflicts
�

�

� Conflict-directed A*

i
�
�

(→)
�

→ i)

l Di i ine
[de Kl i]

Conflicts and Kernel Diagnoses

Finding Consistent Modes
Estimating Likely Modes

Diagnosis by
Divide and Conquer
Given model Ph and observations OBS

1. Find all symptoms
2. Diagnose each symptom separately

each generates a conflict candidates
3. Merge diagnoses

(set covering kernel d agnoses

Genera agnost c Eng
eer & W lliams, 87

7

Conflicts Explain How to
Remove Symptoms

M1

M2
A1

A

B
C
D

E

3

2
2
3

F

G

X

Y

Z

10

Symptom:
F is observed 10, but should be 12 if A1, M1 & M2 are okay.

6

6

12

M3
A2

Conflicts Explain How to
Remove Symptoms

M1

M2
A1

A

B
C
D

E

3

2
2
3

F

G

X

Y

Z

Symptom:
F is observed 10, but should be 12 if A1, M1 & M2 are okay.

Conflict: A1=G & M1=G & M2=G is inconsistent

A1=U or M1=U or M2=U removes conflict.

F 10
12

6

6

i.e., at least one is broken

M3
A2

Find Another Symptom

3

2

3

M1

M3

A1

A2

A

B
C
D

E

F

G

X

Y

Z

10

12

4

6

10

Symptom:
G is observed 12, but should be 10 ...

M2

3

2

3

M1

M3

A1

A2

A

B
C
D

E

F

G

X

Y

Z

10

12

4

6

10

Symptom:
G is observed 12, but should be 10

Conflict: A1=G & M2=G & M1=G & M3=G is inconsistent

Conflict not just upstream
from symptom

… and its Conflict

M2

3

2

3

M1

M3

A1

A2

A

B
C
D

E

F

G

X

Y

Z

10

12

4

6

10

Symptom:
G is observed 12, but should be 10

Conflict: A1=G & M2=G & M1=G & M3=G is inconsistent

A1=U or A2=U or M1=U or M3=U removes conflict

Conflict not just upstream
from symptom

… and its Conflict

M2

Summary: Conflicts

M1

M2
A1

A

B
C
D

E

3

2
2
3

F

G

X

Y

Z

10

Conflict:

A set of component modes M that are
inconsistent with the model and observations.

Properties:
• Every superset of a conflict is a conflict
• Only need conflicts that are minimal under subset
• Logically, not M is an implicate of Model & Obs

6

6

12

M3
A2

8

?
?3

2
2
3

3

M1

M3

A1

A

B
C
D

E

F

G

X

Y

Z

10

12?= { & }

•
(

•

Outline

Model-based Diagnosis
�

� Generating Kernels from Conflicts
�

�

� Conflict-directed A*

Kernel Diagnosis

A2=U M2=U

Summary: Kernel Diagnoses

Partial Diagnosis: A set of component modes M all of whose
extensions are diagnoses.

M removes all symptoms

• M entails Model & Obs implicant)

Kernel Diagnosis: A minimal partial diagnosis K

M is a prime implicant of model & obs

Conflicts and Kernel Diagnoses

Finding Consistent Modes
Estimating Likely Modes

Conflicts to Kernels

•

Ö

M1

M2
A1

A

B
C
D

E

3

2
2
3

F

G

X

Y

Z

10

6

6

12

M3
A2

?
?3

2
2
3

3

M1

M3

A1

A

B
C
D

E

F

G

X

Y

Z

10

12?

Diagnoses Found by Mapping

Conflict: A set of component modes M that are
inconsistent with the model and observations.

not M is an implicate of Model & Obs

Kernel Diagnosis: A minimal set of component modes K that
eliminate all symptoms.

•M is a prime implicant of Model & Obs

Conflicts map to Kernels by minimal set covering
(see “Characterizing Diagnosis,” de Kleer, Reiter, Mackworth)

Kernel Diagnoses =

Generate Kernels From Conflicts

A1=U or M1=U or M2=U removes conflict 1.

A1=U or A2=U or M1=U or M3=U removes conflict 2

“Smallest” sets of modes that remove all conflicts

{A1=G, M1=U, M2=U} conflict 1.

{A1=U, A2=U, M1=U, M3=U} conflict 2

Kernel Diagnoses = {A1=U}

“Smallest” sets of modes that remove all conflicts

A1=U or M1=U or M2=U removes conflict 1.

A1=U or A2=U or M1=U or M3=U removes conflict 2

Generate Kernels From Conflicts
{A1=G, M1=U, M2=U} conflict 1.

{A1=U, A2=U, M1=U, M3=U} conflict 2

Kernel Diagnoses = {M1=U}
{A1=U}

“Smallest” sets of modes that remove all conflicts

A1=U or M1=U or M2=U removes conflict 1.

A1=U or A2=U or M1=U or M3=U removes conflict 2

Generate Kernels From Conflicts
{A1=G, M1=U, M2=U} conflict 1.

{A1=U, A2=U, M1=U, M3=U} conflict 2

9

Kernel Diagnoses = {A2=U, M2=U}
{M1=U}
{A1=U}

“Smallest” sets of modes that remove all conflicts

A1=U or M1=U or M2=U removes conflict 1.

A1=U or A2=U or M1=U or M3=U removes conflict 2

Generate Kernels From Conflicts
{A1=G, M1=U, M2=U} conflict 1.

{A1=U, A2=U, M1=U, M3=U} conflict 2

Kernel Diagnoses = {M2=U, M3=U}
{A2=U, M2=U}
{M1=U}
{A1=U}

“Smallest” sets of modes that remove all conflicts

A1=U or M1=U or M2=U removes conflict 1.

A1=U or A2=U or M1=U or M3=U removes conflict 2

Generate Kernels From Conflicts
{A1=G, M1=U, M2=U} conflict 1.

{A1=U, A2=U, M1=U, M3=U} conflict 2

Single Fault Diagnoses = {A1=U, M1=U}

Single Fault Diagnoses are the
Intersection of All Conflicts

A1=U or M1=U or M2=U removes conflict 1.

A1=U or A2=U or M1=U or M3=U removes conflict 2

{A1=G, M1=U, M2=U} conflict 1.

{A1=U, A2=U, M1=U, M3=U} conflict 2

Outline

Model-based Diagnosis
� Conflicts and Kernel Diagnoses
� Generating Kernels from Conflicts
� Finding Consistent Modes
� Estimating Likely Modes
� Conflict-directed A*

Diagnosis With Only the
Unknown

Inverter(i):
� G(i): Out(i) = not(In(i))
� U(i):

X YA B C0 00 0

Nominal and Unknown Modes

• Isolates surprises
• Doesn’t explain

Notational Note:

G(i) ≡ [i = G]

Diagnosis With Only the
Known

Inverter(i):
� G(i): Out(i) = not(In(i))
� S1(i): Out(i) = 1
� S0(i): Out(i) = 0

X YA B C0 00 0

Exhaustive Fault Modes

• No surprises
• Explains

10

Solution: Diagnosis as
Estimating Behavior Modes

Inverter(i):
� G(i): Out(i) = not(In(i))
� S1(i): Out(i) = 1
� S0(i): Out(i) = 0
� U(i):

X YA B C0 00 0

Nominal, Fault and Unknown Modes

• Isolates surprises
• Explains

Sherlock
[de Kleer & Williams, IJCAI 89]

Example Diagnoses

X YA B C0 0
1

Diagnosis: [S1(A),G(B),U(C)]

0 0

Sherlock
[de Kleer & Williams, 89]

Example Diagnoses

X YA B C0 0
1

Diagnosis: [S1(A),G(B),U(C)]

Kernel Diagnosis: [U(C)]

X YA B C0 0??

0 0

0 0

Sherlock
[de Kleer & Williams, 89] 1. Find Symptoms & Conflicts

Conflict:

not [G(A), G(B) and G(C)]

X YA B C0 0

1 0G G
G0

0
1

0
0

More Symptoms & Conflicts

Not [S1(A), G(B), and G(C)]

X YA B C0 0

1 0S1 G
G

0
0

1

0
0

not [S0(B) and G(C)]

X YA B C0 0

0S0
G

0
0

1

More Symptoms & Conflicts

0
0

11

not S1(C)

X YA B C0 0

1S10
0

All Conflicts

�

�

�

�

More Symptoms & Conflicts

< S1(C) >
< S0(B), G(C) >

< S1(A), G(B), G(C) >

< G(A), G(B), G(C) >

from Conflicts
�

=>
� < S0(B), G(C) >

=>

� < S1(A), G(B), G(C) >
=>

� < G(A), G(B), G(C) >
=> � [U(C)]

�

�

�

� (B),S1(C),S0(C)

2. Constituent Diagnoses

< S1(C) >
G(C),S0(C) or U(C)

G(B),S1(B),U(B),S1(C),S0(C) or U(C)

G(A),S0(A),U(A),S1(B),S0(B),U(B),S1(C),S0(C) or U(C)

S1(A),S0(A),U(A),S1(B),S0(B),U(B),S1(C),S0(C) or U(C)

3. Generate Kernel
Diagnoses

[G(C),S0(C),U(C)]
[G(B),S1(B),U(B),S1(C),S0(C),U(C)]

[G(A),S0(A),U(A),S1(B),S0(B),U(B),S1(C),S0(C),U(C)]

[S1(A),S0(A),U(A),S1(B),S0(B),U ,U(C)]

� [U(C)]
� [S0(C)]

�

�

�

� (B),S1(C),S0(C)

� [U(C)]
� [S0(C)]
� [U(B),G(C)]

�

�

�

� (B),S1(C),S0(C)

[G(C),S0(C),U(C)]
[G(B),S1(B),U(B),S1(C),S0(C),U(C)]

[G(A),S0(A),U(A),S1(B),S0(B),U(B),S1(C),S0(C),U(C)]

[S1(A),S0(A),U(A),S1(B),S0(B),U ,U(C)]

3. Generating Kernel
Diagnoses

[G(C),S0(C),U(C)]
[G(B),S1(B),U(B),S1(C),S0(C),U(C)]

[G(A),S0(A),U(A),S1(B),S0(B),U(B),S1(C),S0(C),U(C)]

[S1(A),S0(A),U(A),S1(B),S0(B),U ,U(C)]

3. Generating Kernel
Diagnoses

12

� [U(C)]
� [S0(C)]
� [U(B),G(C)]

� [G(C),S0(C),U(C)]
� [G(B),S1(B),U(B),S1(C),S0(C),U(C)]

� [G(A),S0(A),U(A),S1(B),S0(B),U(B),S1(C),S0(C),U(C)]

� [S1(A),S0(A),U(A),S1(B),S0(B),U(B),S1(C),S0(C),U(C)]

� [S1(B),G(C)]

3. Generating Kernel
Diagnoses

� [U(C)]
� [S0(C)]
� [U(B),G(C]

� [S1(B),G(C)]

� [U(A),G(B),G(C)]

� [G(C),S0(C),U(C)]
� [G(B),S1(B),U(B),S1(C),S0(C),U(C)]

� [G(A),S0(A),U(A),S1(B),S0(B),U(B),S1(C),S0(C),U(C)]

� [S1(A),S0(A),U(A),S1(B),S0(B),U(B),S1(C),S0(C),U(C)]

3. Generating Kernel
Diagnoses

� [U(C)]
� [S0(C)]
� [U(B),G(C]

� [S1(B),G(C)]

� [U(A),G(B),G(C)]

� [S0(A),G(B),G(C)]

� [G(C),S0(C),U(C)]
� [G(B),S1(B),U(B),S1(C),S0(C),U(C)]

� [G(A),S0(A),U(A),S1(B),S0(B),U(B),S1(C),S0(C),U(C)]

� [S1(A),S0(A),U(A),S1(B),S0(B),U(B),S1(C),S0(C),U(C)]

3. Generate Kernel
Diagnoses

Diagnoses: (42 of 64 candidates)

Fully Explained Failures
� [G(A),G(B),S0(C)]
� [G(A),S1(B),S0(C)]
� [S0(A),G(B),G(C)]

. . .
Fault Isolated, But Unexplained
� [G(A),G(B),U(C)]
� [G(A),U(B),G(C)]
� [U(A),G(B),G(C)]

Partial Explained
� [G(A),U(B),S0(C)]
� [U(A),S1(B),G(C)]
� [S0(A),U(B),G(C)]

. . .

X YA B C0 00 0

Outline

Model-based Diagnosis
� Conflicts and Kernel Diagnoses
� Generating Kernels from Conflicts
� Finding Consistent Modes
� Estimating Likely Modes
� Conflict-directed A*

Due to the unknown mode, there tends to be an
exponential number of diagnoses.

U
Candidates with
UNKNOWN failure
modes

Candidates with
KNOWN failure
modes

Good Good
G

F1
Fn

G

U

But these diagnoses represent a small fraction of the
probability density space.

Most of the density space may be represented
by enumerating the few most likely diagnoses

13

X YA B C0 00

Probabilities

p(c) = p(m)
m ∈c
∏

A B C

p(G) .99 .99 .99

p(S1) .008 .008 .001

p(S0) .001 .001 .008

p(U) .001 .001 .001

p([(B) (C)

p([S1(A)) (C)])

(A)

(A) ((C)])

0
0.2
0.4
0.6
0.8

1
1.2

OK

S0(A
)

S1(B
)

S0(
C)

U(A
)

U(B
)

U(C
)

S1(
A),S

0(
C)

Candidate Initial (prior)

G(A),G ,G]) = .97

,G(B ,G = .008

p([S1 ,G(B),S0(C)]) = .00006

p([S1 ,S1 B),S0 = .0000005

Assume Failure
Independence

Posterior Probability, after

� i il
 | c)

� i il
 | c)

�
|

� /

p(c | x = v) =
p(x = v | c) p(c)

p(x = v)

�)
�
� P(out = 1 |
� = 1
�
� = .97/p(x=v)

p(c | x = v) =
p(x = v | c)p(c)

p(x = v)

X YA B C 10
Observation x = v

P(x=v|c) estimated using Model:

If previous obs, c and Ph enta s x = v
Then p(x = v = 1

If previous obs, c and Ph enta s x <> v
Then p(x = v = 0

If Phi consistent with all values for x
Then p(x = v c) is based on priors

E.g., uniform prior = 1 m for m possible values of x

Bayes’
Rule

Normalization Term
Observe out = 1:

C = [G(A),G(B ,G(C)]
Prior: P(C) = .97

 C) = ?

P(C | out = 0) = ?

�)
� P(C) = .97
� P(out = 0 |
� = 0
�
�

p(c | x = v) =
p(x = v | c)p(c)

p(x = v)

X YA B C 00
X YA B C0

 A B C

)

)

)

0

Observe out = 0:
C = [G(A),G(B ,G(C)]

 C) = ?

P(C | out = 0) = ?
= 0 x .97/p(x=v) = 0

p(S1 .008 .008 .001

p(S0 .001 .001 .008

p(U .001 .001 .001

Example: Tracking Single Faults
• which are eliminated?
• which predict observations?
• Which are agnostic?

Priors for Single
Fault Diagnoses:

14

X YA B C X YA B C

0
0.2
0.4
0.6
0.8

1
1.2

OK

S0(A
)

S1(B
)

S0(
C)

U(A
)

U(B
)

U(C
)

S1(
A),S

0(
C)

0 00

Leading diagnoses before output observed

0
0.1
0.2
0.3
0.4
0.5

OK
S0(A

)

S1(B
)

S0(C
)

U(A
)

U(B
)

U(C
)

S1(A
)S

0(C
)

0 00 0

Top 6 of 64 = 98.6% of P

Leading diagnoses before output observed

Summary: Candidate Probabilities

p(c) = p(m)
m ∈c
∏ Assume Failure

Independence

P(x=v|c) estimated using Model:
� If previous obs, c and Phi entails x = v

Then p(x = v | c) = 1
� If previous obs, c and Phi entails x <> v

Then p(x = v | c) = 0
� If Phi consistent with all values for x

Then p(x = v | c) is based on priors
� E.g., uniform prior = 1/m for m possible values of x

p(c | x = v) =
p(x = v | c)p(c)

p(x = v)
Bayes’
Rule

Normalization Term

Due to the unknown mode, there tends to be an
exponential number of diagnoses.

U
Candidates with
UNKNOWN failure
modes

Candidates with
KNOWN failure
modes

Good Good
G

F1
Fn

G

U

But these diagnoses represent a small fraction of the
probability density space.

Most of the density space may be represented
by enumerating the few most likely diagnoses

15

