
Cognitive Game Theory

Inductive Adversary Modeling
Evolutionary Chess

Alpha-Beta minimax search

Jennifer Novosad, Justin Fox and Jeremie Pouly

Our lecture topic is cognitive game.

We are interested in this subject because games are a simple representation

of reality on which we can test any concept developed in artificial intelligence.

For this reason games have always been considered as an attractive

framework for new developments.

Our talk in divided in three parts:

• Jeremie will first give a quick review of the minimax search and present a few
improvements including alpha-beta cutoffs, transposition table and move
ordering. He will also introduce the two demonstrations of the lecture.

• Jennifer

• Justin

1

Motivation

• Good benchmark

• Computer can beat humans

• Fun

• $

– Similar to military or financial domains

2

Reasoning Techniques for Games

Games

Search Statistical
Inference

Bayesian
Nets

Hidden
Markov
Models

Minimax/ Evolutionary
Algorithms … … Adversary

modelAlpha-Beta

3

Cognitive Game Theory

•

•

•

Alpha/Beta Search – Jeremie

Adversary Modeling – Jennifer

Evolutionary Algorithms – Justin

We return to the outline to note that the next section of this talk
will now focus on a still small, but more detailed and less abstract example of
how evolutionary algorithms may be applied to create chess players. This
example can be found in the paper:

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress
on Evolutionary Computation.

4

Cognitive Game Theory

• Alpha/Beta Search

• Adversary Modeling
• Evolutionary Algorithms

– Minimax search
– Evaluation function
– Alpha-Beta cutoffs
– Other improvements
– Demo

We return to the outline to note that the next section of this talk
will now focus on a still small, but more detailed and less abstract example of
how evolutionary algorithms may be applied to create chess players. This
example can be found in the paper:

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress
on Evolutionary Computation.

5

Adversarial search

• Max & Min
– Max wants to win
– Min wants Max to loose

Initial Board Situation

New Board
Situations

1 0
Win Loss Draw Loss

MAX

MIN

MAX

:
:
:

Two-person games: Players =

Final Board Situations - End Games

-1 -1

6

• Basic Assumption

•

•

Minimax search

Strategy:
– MAX wants to maximise its payoff
– MIN is trying to prevent this.

MiniMax procedure maximises MAX’s
moves and minimises MIN’s moves.

7

An example

1 1 0

a

b

d

c

e f g

MAX

MIN

Terminal
States

1

1

Best value for MAX is 1

-1

-1

8

• If terminal state then return payoff

• then use MINIMAX on
the children and return the maximum of
the results.

• Otherwise (MIN node), use MINIMAX
on the children and return the minimum
of the results.

Function MINIMAX (called at each node):

Minimax recursive procedure

Else if MAX node

9

Problems

• m)
b branching factor and m depth of the terminal states
(Chess, b=35, m=100 � 35100»10154 nodes to visit)

• Not possible to search the full game tree

Cutoff the tree at a certain depth

• But payoffs defined only at terminal states

Time complexity: O(b

10

Cognitive Game Theory

• Alpha/Beta Search

• Adversary Modeling
• Evolutionary Algorithms

– Minimax search
– Evaluation function
– Alpha-Beta cutoffs
– Other improvements
– Demo

We return to the outline to note that the next section of this talk
will now focus on a still small, but more detailed and less abstract example of
how evolutionary algorithms may be applied to create chess players. This
example can be found in the paper:

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress
on Evolutionary Computation.

11

Heuristic evaluation function

• Estimate the chance of winning from board
configuration.

• Important qualities:
– Must agree with terminal states
– Must be fast to compute
– Should be accurate enough

•
Value of all black pieces
Chess or checkers: Value of all white pieces –

12

Heuristic evaluation function

Val ???Val = (4*1) – (4*1+1*2) = -2

13

Our evaluation function

• Normal checker =
100000

• 4 parameters (long):
– King value
– Bonus central square

for kings
– Bonus move forward

for checkers
– Bonus for order of the

moves (*depth/2)

14

Our evaluation function

• Normal checker =
100000

• 4 parameters (long):
– King value
– Bonus central square

for kings
– Bonus move forward

for checkers
– Bonus for order of the

moves (*depth/2)

No Bonus

+ 1*Bonus

+ 2*Bonus

+ 3*Bonus

15

Cognitive Game Theory

• Alpha/Beta Search

• Adversary Modeling
• Evolutionary Algorithms

– Minimax search
– Evaluation function
– Alpha-Beta cutoffs
– Other improvements
– Demo

We return to the outline to note that the next section of this talk
will now focus on a still small, but more detailed and less abstract example of
how evolutionary algorithms may be applied to create chess players. This
example can be found in the paper:

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress
on Evolutionary Computation.

16

• Search deeper in the same amount of time

•
cannot possibly influence the final decision

•
(two searches in parallel: MAX and MIN)

Alpha-Beta pruning

Basic idea: prune away branches that

Similar to the Branch-and-Bound search

17

General case

:
m

n

MAX

MIN

MAX

MIN

for MAX then n will never get into play
will always be chosen in preference.

If m is better than n
because m

18

B1

1 0

3 12 8 4 4 6

4

root

A3A2A1

B2 B3 B1 B2 B3

Best assignment: [A1,B1], value = 3

Review of Branch-and-Bound

Var A

Var B

= 4

19

• Search game tree keeping track of:
– Alpha: Highest value seen so far on maximizing level
– Beta: Lowest value seen so far on minimizing level

• Pruning:
: prune parent if node evaluation smaller

than Alpha

: prune parent if node evaluation greater
than Beta

Alpha-Beta procedure

– MAX node

– MIN node

20

• MIN: minimize board valuation �minimize

• MAX: maximize board valuation � inverse

• Prune parent instead of current node
(stop expanding siblings)

Branch-and-Bound analogy

constraints in Branch-and-Bound

of Branch-and-Bound (but same idea)

21

Example MIN

3 1

3

4

= 4

1 0 2

2

Min

Max

Beta: Lowest value seen so far on minimizing level

Beta = 3Beta not
define Beta = 3

-5

3 2

22

Example MAX

3 11 5

3

14

£ 210

Max

Min

Alpha: Highest value seen so far on maximizing level

Alpha not
define Alpha = 3 Alpha = 10

224 10

3 10

23

Beta cutoffs

MaxValue)

For each Child of Node do

Return a

(Node,a,b
If CutOff-Test(Node)

then return Eval(Node)

a = Max(a, MinValue(Child,a,b))
if a = b then return b

24

Alpha cutoffs

MinValue)

For each Child of Node do

Return b

(Node,a,b
If CutOff-Test(Node)

then return Eval(Node)

b = Min(b, MinValue(Child,a,b))
if b = a then return a

25

• Effectiveness depends on nodes ordering

• Worse case: no gain (no pruning) � O(bd)

• Best case (best first search) � O(bd/2) i.e.
allows to double the depth of the search!

• Expected complexity: O(b3d/4)

Alpha-Beta gains

26

Cognitive Game Theory

• Alpha/Beta Search

• Adversary Modeling
• Evolutionary Algorithms

– Minimax search
– Evaluation function
– Alpha-Beta cutoffs
– Other improvements
– Demo

We return to the outline to note that the next section of this talk
will now focus on a still small, but more detailed and less abstract example of
how evolutionary algorithms may be applied to create chess players. This
example can be found in the paper:

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress
on Evolutionary Computation.

27

Other improvements

• Nodes ordering (heuristic)

• Quiescent search (variable depth &
stable board)

• Transposition tables (reconnect nodes
in search tree)

28

Advanced algorithm
MaxValue)

If board already exist in transposition tables then
if new path is longer return value in the table

Save board in transposition table

Find all the children and order them (best first)
For each Child of Node (in order) do

if a>=b then return b
Return a

(Node,a,b

If CutOff-Test(Node) then
if quiescent board then return Eval(Node)

a:=Max(a,MinValue(Child,a,b))

29

Statistics: opening

Depth Minimax Alpha-
Beta

+ Move
ordering

Quiesc.
search

Transpo.
tables

Number
of nodes

4 3308 278 271 * 2237

6 217537 5026 3204 41219 50688

8 15237252 129183 36753 649760 859184

Search
time

4 0 0 0 * 0

(sec.) 6 3 0 0 0 1

8 201 1 0 9 12

30

31

Statistics: jumps available

Depth Minimax Alpha-
Beta

+ Move
ordering

Quiesc.
search

Transpo.
tables

Number
of nodes

4 8484 2960 268 * 5855

6 695547 99944 2436 170637 172742

8 56902251 2676433 22383 2993949 3488690

Search
time

4 0 0 0 * 0

(sec.) 6 9 1 0 2 2

8 739 34 0 38 46

32

Statistics: conclusions

First move Jumps available
Depth 8 Basic Advanced Basic Advanced

minimax algorithm minimax algorithm

Number of
nodes

15237252 4835 56902251 6648

Search
time (sec.)

201 0 739 0

Gain of more than 99.9% both in time and number of nodes

33

Cognitive Game Theory

• Alpha/Beta Search

• Adversary Modeling
• Evolutionary Algorithms

– Minimax search
– Evaluation function
– Alpha-Beta cutoffs
– Other improvements
– Demo

We return to the outline to note that the next section of this talk
will now focus on a still small, but more detailed and less abstract example of
how evolutionary algorithms may be applied to create chess players. This
example can be found in the paper:

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress
on Evolutionary Computation.

34

Cognitive Game Theory
• Alpha/Beta Search
• Adversary Modeling

• Getting Chunks
• Applying Chunks

ab

• Evolutionary Algorithms

– Psychological Background
– Structure of IAM

– Results/Application to min-max
– Flexibility in Other Domains

35

Inductive Adversary Modeler

•

Optimally

• Reduce Computation
•

domains

Incorporate Model of Opponent into aß
– Currently, Assumes Opponent Plays

Make aß More Extendable to other

36

Cognitive Game Theory
• Alpha/Beta Search
• Adversary Modeling

• Getting Chunks
• Applying Chunks

ab

• Evolutionary Algorithms

– Psychological Background
– Structure of IAM

– Results/Application to min-max
– Flexibility in Other Domains

37

Modeling a Human Opponent

Textual
Memory

Visual
Memory*

TimingSymmetry

OrderContinuation

VerbatimSimilarity

Rote
Memorization

Proximity

*From a study by Chase and Simon

38

• Recall Studies, Masters vs. Beginners
• Frequently Used Pattern
• Contains Previous Points (Proximity,

Similarity, Continuation, Symmetry)
• Used to Encapsulate Information

Storing Data -- Chunks

39

Modeling a Human Opponent

• Humans Acquire Chunks

• Winning Increases Chunk Use
(Reinforcement Theory)

• People Tend to Reduce Complexity via
Familiar Chunks

3 Assumptions

40

Cognitive Game Theory
• Alpha/Beta Search
• Adversary Modeling

• Getting Chunks

• Applying Chunks
ab

• Evolutionary Algorithms

– Psychological Background
– Structure of IAM

– Valid Chunks
– Acquiring Chunks

– Results/Application to min-max
– Flexibility in Other Domains

41

Structure of IAM

Noise
Filter

Move
Predictor Prediction

Text
Chunks

Visual
Chunks

Text
Processor

Current
Board

Prior
Adversary

Games

Visual
Chunk

Collector

Internal
Chess
Model

Partial
Chunk
Finder

Heuristic
Move

Selection

42

Valid Visual Chunks

• Proximity
• Similarity
• Continuation
• Symmetry

(reduces stored chunks by about 60%)

- 4x4 grid, adjacent vertically or horizontally

- same color (exception – pawn structure)

- pieces defending each other included

– symmetrical chunks stored as one

43

Visual Chunk Collector

•
• After Adversary Move, Search for Valid

Chunks

• If Neighbor in Pattern, Convolve
Recursively

4 8 16

2 X 32

1 128 64

General

4 8 16

2 X 32

0 128 0

Pawn

0 8 0

2 X 32

0 128 0

Rook, Knight

Internal Board Model – Matrix of Values, X

– Convolution on Adversary Pieces
– Store Values in 8x8 Matrix, Y

44

Convolution Example

X:

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Y:

0 8 0

2 X 32

0 128 0

Rook, Knight

45

Convolution Example

X:

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Y:

0 8 0

2 X 32

0 128 0

Rook, Knight

46

Convolution Example

X:

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Y:

0 8 0

2 X 32

0 128 0

Rook, Knight

47

Convolution Example

X:

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Y:

0 8 0

2 X 32

0 128 0

Rook, Knight

48

Convolution Example

X:

0 0 0 0 0 0

0 0 0 128 0 0

0 0 0 128 0 0

0 0 0 0 0 0

Y:

0 8 0

2 X 32

0 128 0

Rook, Knight

49

Convolution Example

X:

0 0 0 0 0 0

0 0 0 128 0 0

0 0 0 128 0 0

0 0 0 0 0 0

Y:

4 8 16

2 X 32

0 128 0

Pawn

50

Convolution Example

X:

0 0 0 0 0 0

0 0 0 136 0 0

0 0 0 196 32 0

0 0 0 128 0 0

Y:

4 8 16

2 X 32

0 128 0

Pawn

51

Convolution Example

X:

0 0 0 0 0 0

0 0 0 140 0 0

0 0 0 202 208 50

0 0 0 130 158 0

Y:

52

Chunk Noise Filter

• Need to Avoid Random Chunks

big tactical effect

• Requires Chunk Appears in 2+ games

• If so, Store as a Known Chunk

– chess noise tolerant – small changes have a

– 28/272 patterns repeated twice (Botvinnik,
Hauge-Moscow Tournament)

– store color, time in game, if won or lost game
– frequency of occurrences, etc

53

Cognitive Game Theory
• Alpha/Beta Search
• Adversary Modeling

• Getting Chunks
• Applying Chunks

ab

• Evolutionary Algorithms

– Psychological Background
– Structure of IAM

– Finding Possible Chunks
– Evaluating likelihood of move

– Results/Application to min-max
– Flexibility in Other Domains

54

Structure of IAM

Noise
Filter

Move
Predictor Prediction

Text
Chunks

Visual
Chunks

Text
Processor

Current
Board

Prior
Adversary

Games

Visual
Chunk

Collector

Internal
Chess
Model

Partial
Chunk
Finder

Heuristic
Move

Selection

55

Guiding Assumption:

• If a Partial Chunk is 1 move from
Completion, the Opponent is likely to
make that move

• Uses Pattern Recognition

• Uses Rule Based Heuristics

– Find Partial Chunks to get Likely Moves

– Evaluate Belief in Each Likely Move

56

Finding Partial Chunks

• For Each Adversary Piece
• For Each Chunk that Fits on the Board

State of the Board, (not Including Wildcards)
• Check if any Move can Complete the Chunk

• Return All Completing Moves to the Move
Selection Module

– If One Difference Between Chunk and the

57

Example

Prediction

58

Heuristic Move Selection

• Rule Based Heuristic Algorithm
• Gives a Measure of Belief in Each Move
• Initial Belief = Frequency of Chunk
• Each Heuristic Adds/Subtracts
• Examples:

• Favor Large Patterns
• Favor Major Pieces
• Favor Temporal Similarity
• Eliminate Move if Adversary just dissolved this

pattern
• Favor Winning Patterns

59

Cognitive Game Theory
• Alpha/Beta Search
• Adversary Modeling

• Getting Chunks
• Applying Chunks

ab

• Evolutionary Algorithms

– Psychological Background
– Structure of IAM

– Results/Application to min-max
– Flexibility in Other Domains

60

Results
Belief In Prediction

Number < 25% 25-30% 30-40% 40-50% >50%
Games

12
(16.1%)

5/31

(44.4%)

4/9

(50%)

3/6

(60%)

3/5

(75%)

3/4

22
(12.7%)

6/47

(42.8%)

3/7

(50%)

3/6

(75%)

3/4

(100%)

3/3

80
(16.6%)

6/36

(50%)

3/6

(100%)

3/3

(100%)

3/3

(100%)

3/3

61

ab

• Used to Prune Search Tree

•

Results -- Min-Max

– Develop Tree Along More Likely Moves

Average Ply Increase – 12.5%

62

Cognitive Game Theory
• Alpha/Beta Search
• Adversary Modeling

• Getting Chunks
• Applying Chunks

ab

• Evolutionary Algorithms

– Psychological Background
– Structure of IAM

– Results/Application to min-max
– Flexibility in Other Domains

63

Flexibility in Other Domains

• Applicable to Other Domains

• Requires a Reworking of Visual Chunk
Convolution Templates

– Requires Competition, Adversary

– Military, Corporate, and Game Tactics

64

Cognitive Game Theory
• Alpha/Beta Search
• Adversary Modeling
• Evolutionary Algorithms

for chess evolution

– Intro to Evolutionary Methodology
– Small Example – Kendall/Whitwell
– Evochess – Massively distributed computation

65

Evolutionary/Genetic Programs

• Create smarter agents through mutation and crossover
Mutation: “Random” change Crossover: Swapping of
to a set of program statements statements between players

• Applications in innumerable fields:
– Optimization of Manufacturing Processes
– Optimization of Logic Board Design
– Machine Learning for Path Planning/Scientific Autonomy
– CHESS!!! ☺

Starting from randomly created and very weak programs,
evolutionary algorithms seek to create stronger or smarter programs by
mimicking the principles of natural selection and of general biology. Weak
programs are forced to compete with one another at a specified task. The
losers are destroyed while the winners are retained. In place of the losers,
modified copies of the winners are also created. These copies are created
from the originals either through mutations (a random change or changes in
the program’s statements or structure) or through crossover (a transfer of
information between two “strong” programs with the objective of discovering an
even better combination of information).

Such programming techniques have been used frequently in
fields such as manufacturing, circuit-board design, and of course, chess. For
more information on other applications of genetic programming and
evolutionary algorithms, feel free to consult:

Kojima, et. al. An Evolutionary Algorithm Extended by Ecological Analogy to
the Game of Go. Proceedings 15 Intl. Joint Conf. on AI, 1997.

Koza. Genetic Programming. Encyclopedia of Computer Science and
Technology. 1997.

Zbigniew. Evolutionary Algorithms for Engineering Applications. 1997.

66

Evolutionary Paradigm

• Start with random population of chess
players:

Let us walk through a simple, abstracted example to illustrate
concretely the methodology we will be using.

In the slide above, there are six randomly created blobs. Some
blobs are already smarter chess players than the others simply by random
luck. (For example the blob in the lower right corner doesn’t even have eyes,
so probably will not be as good at chess as the others!)

These six blobs may represent entire chess-playing programs
(as in the case of the EvoChess project) or merely a certain portion of such a
program (as in the Kendall/Whitwell evaluation function example we’ll see in a
moment).

67

Evolutionary Paradigm

•	 Population plays games against each
other:

We take this original population and allow it to compete. For
example, we could have each blob play a best of 3 chess match against every
other blob. Or (as is illustrated above) we could perform pairwise comparisons
between the various blobs. Each pair of blobs could play a best of 3 match
and the results would be recorded.

68

Evolutionary Paradigm

•	 Losers are killed and removed from
population:

Those blobs who lost two of three games would then be culled
from the population (as demonstrated by the blood splats above). The
assumption here being that these weaker blobs represent areas of the space
which are no longer productive to explore. The stronger blobs, on the other
hand, represent areas of the space which may yield even stronger players if
we continue to explore players similar to them.

69

Evolutionary Paradigm

•	 Winners mate and have (possibly
mutated) offspring:

Pure
mutation

To maintain the population size and also to ensure that we are
not only exploiting the space, but also exploring it, we use the biological
models of mutations and crossovers to create new chess players starting from
the features of the strongest blobs remaining in the population.

The slide above demonstrates that sometimes these newly-
created blobs can move closer to the optimal chess player (as denoted by the
pictures of myself and Professor Brian Williams) and that sometimes the
newly-created blobs can be de-evolved versions of the former player, moving
farther from the desired intelligent agent and becoming something much
worse.

70

Evolutionary Paradigm

• New Population Competes:

The new population, which at worst contains algorithms of the
same strength as the previous generation and at best contains algorithms of
better strength, is again allowed to compete. In the example above, it is
discovered that Professor Williams is a more capable chess player than either
myself, Bill Gates, or the three remaining blobs. Who knew?

71

Evolutionary Paradigm

•	 Eventually the population converges,
mutations become reduced, and the whole
population converges:

As time goes by, mutations are allowed to become less and less
severe or frequent. This drives the population to converge. When the
differences between the population’s performance become slight or when
some other relevant stopping criteria has been met, the best player within the
population is declared the “most evolved” player. This evolved player is
usually much stronger than the original weak blobs that were started with, and
yet minimal domain-specific knowledge has been required of the programmer.
Using this technique, a programmer could easily develop a chess program that
not only had greater computational search resources available to it, but could
also conceptually understand the game better than the programmer himself.
Such a result is extremely intriguing and useful in many real-world
applications.

In the case above, we see that eventually our population of blobs
has converged to become the great Gary Kasparov. Now THAT’S a powerful
algorithm.

72

Cognitive Game Theory

• Alpha/Beta Search
• Adversary Modeling
• Evolutionary Algorithms

for chess evolution

– Intro to Evolutionary Methodology
– Small Example – Kendall/Whitwell
– Evochess – Massively distributed computation

We return to the outline to note that the next section of this talk
will now focus on a still small, but more detailed and less abstract example of
how evolutionary algorithms may be applied to create chess players. This
example can be found in the paper:

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress
on Evolutionary Computation.

73

Evolution Example

• Kendall/Whitwell
– Evolve an Evaluation Function for Chess

Through Mutation and Self-Competition

In this paper, the authors present a method by which an
evaluation function for chess can be created. (Evaluation functions are
covered earlier in the talk by Jeremie Pouly, but in brief are a method by which
a computer chess player can discern how “good” or “bad” he is doing given a
certain chessboard configuration.) These evaluation functions are generally
the hardest part of a chess program for a programmer to create because they
require the incorporation of expert knowledge which may be unavailable or
very painstaking to obtain. Because of its domain-independent learning
capability, evolutionary algorithms are perfectly suited to the task of evaluation
function creation.

Kendall and Whitwell defined their evaluation function as a
weighted sum of the difference in the numbers of each piece along with a
seventh value representing the number of available moves for a given player.
The authors chose to incorporate as much domain-knowledge as they had in
order to limit the scope of their algorithm, but this in general would not be
necessary. They could have started from an even more general function with
zero chess knowledge, though the convergence to a suitable player might
have been extremely time-consuming.

74

Mutation
• Explore the space

s

•
• s
•

• 0 and 2 : if function won both games (as white and black)
– Leave function alone and replace losing function with mutant of

winner
• .2 and 1 : if function won one game and drew the other

– Mutate winner by .2 and replace losing function with mutant of
winner

• .5 and .5 : if both games were a draw
– Mutate both functions in place

w(y) = w(y) + (RAND[-.5,5] X (y) X winloss_factor)

w(y) is an evaluation function’s weight for piece y.
(y) is the standard deviation of weight y in population.

winloss_factor =

Given this general evaluation function, the authors created a
random population of chess players (all of which were simple alpha-beta 3-ply
searchers) and started the evolutionary process by performing competitions.
After each competition the loser was completely erased from memory. In its
place, a copy of the winner was placed with slight mutations.

The slide above shows the equation for performing mutations.
Basically it consists of adding or subtracting a random value to the weights for
a certain piece. This value is scaled depending on the outcome of the
competition preceeding the mutation. If the winning algorithm won both
games, one copy is left unchanged while the other is mutated by a large factor.
This ensures that while we hold onto the currently strongest players in the
population, we also continue to broadly search the space for better options. If
the winning algorithm won one game and tied the other game, one copy is
changed slightly and the second copy is changed by a moderate factor, again
in the hopes of further improvement. In the case where the match was a draw,
both algorithms are changed by a moderate factor and replaced in the
population. The final scaling factor in the mutations, and the innovative portion
of Kendall and Whitwell’s work, is the standard deviation of the population.
This provides an intrinsic method by which to reduce the severity of mutations
as the population begins to converge. Previous methods had used an
extrinsic relationship (such as a function which exponentially decreased with
time) that required hand-tuning in order to obtain the proper mutation level at
different stages in the evolution.

75

Results
Standard Chess Weights

Evolved Player

• The evolved player approximately
finds the standard chess weightings

• The Table below shows how much
better the evolved player rates on an
objective scale.

Unevolved Player

This algorithm is shown to be quite capable of creating a useful
chess evaluation function. On the left, the first table represents standard
weightings discovered by human experts through countless years of play. The
second table represents the initial randomized weights of the population used
by Kendall and Whitwell, and the bottom table represents the weights evolved
using the evolutionary algorithm discussed above. It is seen that these
weights closely resemble the standard chess weightings. (The authors did not
conduct a study to determine if the evolved weights actually performed better
than the standard human weights. This is, however, not really the point of the
evolution. We would hope to apply evolution to situations in which human
domain knowledge is unavailable, not improve upon existing knowledge.)

To the right a table depicts the level of the unevolved chess
player based on the United States Chess Federation’s rating scale. It is seen
that the player with random weights performed a full five classes worse than
the evolved player. The evolved player reaches a level bordering on expert.

This vivdly demonstrates that evolutionary algorithms are a
powerful and viable method for creating artificial intelligence. (After all, it is
likely that evolution created human intelligence, why shouldn’t it be able to do
the same for computers!)

76

Cognitive Game Theory

• Alpha/Beta Search
• Adversary Modeling
• Evolutionary Algorithms

for chess evolution

– Intro to Evolutionary Methodology
– Small Example – Kendall/Whitwell
– Evochess – Massively distributed computation

We return to the outline to note that the next section of this talk
will now focus on a still small, but more detailed and less abstract example of
how evolutionary algorithms may be applied to create chess players. This
example can be found in the paper:

Kendall and Whitwell. An Evolutionary Approach for the Tuning of a Chess
Evaluation Function using Population Dynamics, Proc. 2001 IEEE Congress
on Evolutionary Computation.

77

algorithms

What is EvoChess?

A distributed project to evolve better chess-playing

The final portion of this talk focuses on the EvoChess project
developed by Gross, Albrecht, Kantschik, and Banzhaf. This project marked
the first massively distributed evolution of a chess-playing program and is still
arguably one of the most ambitious evolution projects ever undertaken. Like
familiar SETI programs, EvoChess allowed internet users from around the
world to download a chess-evolving client onto their PC and maintain a local
population of evolving chess players which could be accessed by a central
server which performed the necessary interactions between different users’
populations.

78

Basic Architecture

Main Server
in

fra
st

ru
ct

ur
e

B
es

t p
la

ye
r

ge
no

ty
pe

P
op

ul
at

io
n

S
ta

tis
tic

s

M
at

in
g

pa
rtn

er
s

User’s Computer

•

•
(population) is created
locally.

•
calculated and sent to the
server

• Server acts as a chess
“dating service”

“q
oo

py
”

User downloads “qoopy”

Random “deme”

Deme’s Fitness is

The general operation of the EvoChess algorithm is shown
above. An internet user first downloaded the necessary distributed
architecture known as “qoopy” onto his home computer. This program created
a small population of chess-playing individuals on the local machine. These
programs were allowed to compete against a number of standardized chess-
playing algorithms and their fitness was calculated relative to these standard
programs. Information about this population, specifically the genotype of its
strongest player, were then sent back automatically to the main EvoChess
server. This server then acted as a “dating service,” sending the best
genotypes back out to weaker populations as “mating” partners. In this way,
information was transferred from population to population and on average, the
entire EvoChess population began to grow smarter.

79

Basic Individual

•
algorithm
– Limited to search an average of 100,000 nodes

• The algorithm contains three modules which
may be targeted for evolution
– Depth module: Returns remaining search depth for a

given node
– Move Ordering module: Arranges moves in a best

first manner to aid ab pruning
– Evaluation module: Evaluation of given position

An individual is again an alpha-beta search

The basic chess-playing individual used in the EvoChess project
was a very ambitious one. It consisted of a basic alpha-beta search algorithm.
However, instead of being depth-limited, the algorithm was merely limited to
search an average of 100,000 nodes per move.

Three main portions of the player could feel the effects of
evolution. The depth module rated different branches of the search as
“interesting” or “fruitless” and chose whether to spend nodes on further
searching or abandon a particular alpha-beta branch. The move-ordering
module selected the order in which the various possible moves available to a
player at a given time were explored. An intelligent ordering of moves can
greatly decrease the size of an alpha-beta tree by allowing earlier pruning.
Finally, like in the Kendall and Whitwell example, an evaluation module was
needed which could determine how “good” or “bad” a certain board
configuration appeared to a player. EvoChess’s evaluation function, however,
contained over twenty different parameters of interest, making it a great deal
more complicated than the early authors’ function.

80

Depth Module

Functions Allowed

• Only a few basic functions
were allowed in the depth
module

• Module consisted of random
combinations of these with
variables

• From gibberish to chess
player!

One of the most interesting and ambitious portions of the player
was the depth-module. This module relied on genetic programming
techniques. It originally began as a random arrangement of functions and
literals from a finite set (the functions available are depicted in the table
above.) The initial depth modules of first generation players were therefore
usually just complete gibberish. While most authors usually attempt to speed
convergence by applying domain knowledge to limit the scope of a program,
EvoChess used an absolute minimum of information in its original random
depth modules.

This ambitious move was successful because of the vast amount
of resources available to the project. The chances of creating an even semi-
viable depth module given only 100 population members would be vanishingly
small, but when over 1,000,000 internet users downloaded EvoChess and
created small populations of their own, the probability became appreciable.
Indeed, the final evolved players at the end of the project had evolved a very
complicated, intricate depth module that was efficient and powerful.

81

Evaluation Function Parameters

Much more complicated function than Kendall/Whitwell

This slide shows the various parameters included in the
EvoChess evaluation function. I show it for two reasons. First of all, given the
complexity of this function and the rest of the chess-players it still astounds me
that EvoChess was able to achieve a converged evolved solution of such
prowess starting from initially random players. Secondly, for those who are
interested, this is a fairly comprehensive list of the most important evaluation
function parameters for creating algorithms that play chess. The inclusion of
certain parameters is often disputed of course as well as their relative
weightings. It is notable that these disputes can easily be settled through the
use of evolutionary algorithms.

82

Some Results

Number of nodes searched by evolved individuals is
~100 times less than simple ab algorithm and ~10

times less than the optimized f-negascout algorithm.

Once the EvoChess population had significantly evolved, it
yielded exciting results. The graph above shows that a simple alpha-beta
algorithm searches about 100 times more nodes than the EvoChess evolved
individual, and even the state-of-the-art f-negascout algorithm searched 10
times more nodes. And yet the EvoChess individual can consistently defeat
the f-negascout algorithm playing at a depth of 5-ply. (Since the EvoChess
algorithm was limited to only 100,000 nodes, it would be expected to lose to an
f-negascout that was allowed to search more than 1,000,000 nodes or more.

83

• First and largest massively distributed
chess evolution

•
game

• Ambitious project

gibberish

EvoChess Firsts

Qoopy architecture can be used for any

– Depth Module starts completely from

– Number of terms in evaluation function and
move-ordering enormous

This slide recaps some of the major points I highlighted about
EvoChess and why it was an innovative, significant project. First of all, it was
the first internet-distributed chess evolution program of its kind. Its ambitious
nature makes it a difficult stunt to top. A second benefit of this project was the
development of the qoopy architecture. With only minor recoding, this
architecture can easily be used to model the internet-evolution of other
problems beside chess. Along with other board games that the authors of
EvoChess have proposed, I would put forth the possibility of evolving things
like future Mars mission parameters through such a distributed framework. If
each user could help evolve a mission trajectory or mission architecture,
perhaps an interesting optimum not yet thought of by humans could be
reached. Finally, I re-emphasize that EvoChess was a very ambititous
evolution project. Starting the depth modules from completely random
gibberish was a daring move that aptly demonstrated the awesome power of
genetic programs and must serve to silence many skeptics.

84

Sources
•

–

• Section 2: Inductive Adversary Modeler:
–

–
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO.

• Section 3: Evolutionary Algorithms
– Kojima, et. al. An Evolutionary Algorithm Extended by Ecological Analogy to the

Game of Go. Proceedings 15 Intl. Joint Conf. on AI, 1997.
– Genetic Programming. Encyclopedia of Computer Science and

Technology. 1997.
– Evolutionary Algorithms for Engineering Applications . 1997.

Section 1: Alpha Beta Mini-Max:

S. Walczak (1992) Pattern-Based Tactical Planning. International Journal of
Pattern Recognition and Artificial Intelligence 6 (5), 955-988.
S. Walczak (2003) Knowledge-Based Search in Competitive Domains IEEE

3, 734 – 743

Koza.

Zbigniew.

85

