
Particle Filters and Their
Applications

Kaijen Hsiao

Jason Miller

Cognitive Robotics
April 11, 2005

Henry de Plinval-Salgues

1

2

Why Particle Filters?
• Tool for tracking the state of a dynamic

system modeled by a Bayesian network
(Robot localization, SLAM, robot fault
diagnosis)

•

dimensional problems
• Key idea: Find an approximate solution

using a complex model rather than an exact
solution using a simplified model

Similar applications to Kalman Filters, but
computationally tractable for large/high-

Why should you be interested in particle filters?

Because, like Kalman filters, they’re a great way to track the state of a

dynamic system for which you have a Bayesian model. That means that if you

have a model of how the system changes in time, possibly in response to

inputs, and a model of what observations you should see in particular states,

you can use particle filters to track your belief state.

Applications that we’ve seen in class before, and that we’ll talk about today,

are Robot localization, SLAM, and robot fault diagnosis.

So why should you use particle filters instead of Kalman filters?

Well, the main reason is that for a lot of large or high-dimensional problems,

particle filters are tractable whereas Kalman filters are not.

The key idea is that a lot of methods, like Kalman filters, try to make problems

more tractable by using a simplified version of your full, complex model. Then

they can find an exact solution using that simplified model. But sometimes

that exact solution is still computationally expensive to calculate, and

sometimes a simplified model just isn’t good enough. So then you need

something like particle filters, which let you use the full, complex model, but

just find an approximate solution instead.

2

3

Outline

•)
• Particle Filters in SLAM (Henry)
• Particle Filters in Rover Fault Diagnosis

(Jason)

Introduction to Particle Filters (Kaijen

3

4

Outline
• Introduction to Particle Filters

– Demo!
–
– Quick Review of Robot Localization/Problem

– Overview of Particle Filters
– The Particle Filter Algorithm Step by Step

• Particle Filters in SLAM
• Particle Filters in Rover Fault Diagnosis

Formalization of General Problem: Bayes Filters

with Kalman Filters

4

5

Demo of Robot Localization

University of Washington Robotics and State Estimation
Lab http://www.cs.washington.edu/ai/Mobile_Robotics/mcl/

What you see here is a demo from the University of Washington Robotics and
State Estimation Lab. This is a frozen panel of the beginning of a robot
localization task. The little blue circle is our best guess as to where the robot
is now. The little red dots are different hypotheses for where the robot might
be—at the beginning of the task, we have no idea where the robot is, so the
hypotheses cover the entire space. As we’ll see later, each hypothesis is
called a ‘particle’. The lines extending from the robot are sensor
measurements taken by a laser rangefinder. The reason the lines extend well
past the walls on the map is because the robot isn’t actually in that location.
The robot movement comes from a person driving the robot manually; there is
no automatic exploration going on.

5

6

Demo of Robot Localization

University of Washington Robotics and State Estimation
Lab http://www.cs.washington.edu/ai/Mobile_Robotics/mcl/

As you watch the animated gif, the best-guess location of the robot will jump
around as the most likely hypothesis changes. As the robot moves and takes
measurements, it figures out that most of the hypotheses it started with are
pretty unlikely, so it gets rid of those. Pretty soon, the number of hypotheses
is reduced to a few clouds in the hallway; the robot is actually in the hallway,
but there’s a lot of symmetry there, so it’s not sure exactly where. Then it’s
down to two hypotheses, and when the robot finally enters a room and looks
around, it becomes clear that its current best hypothesis was actually correct.

6

7

Outline
• Introduction to Particle Filters

– Demo!
–
– Quick Review of Robot Localization/Problem

– Overview of Particle Filters
– The Particle Filter Algorithm Step by Step

• Particle Filters in SLAM
• Particle Filters in Rover Fault Diagnosis

Formalization of General Problem: Bayes Filters

with Kalman Filters

Now I will discuss the formalization of the general problem that both particle
filters and Kalman filters solve, which is called Bayes Filtering.

7

8

• Used for estimating the state of a
dynamical system from sensor
measurements

• Predict/update cycle
•

Bayes Filters

Examples of Bayes Filters:
– Kalman Filters
– Particle Filters

Bayes Filtering is the general term used to discuss the method of using a
predict/update cycle to estimate the state of a dynamical system from sensor
measurements. As mentioned, two types of Bayes Filters are Kalman filters
and particle filters.

8

9

Trying to find: belief about the current state
p(xt | d)

t t t t),
t | x , u)

Bayes Filters cont.

x state variable
u inputs
z observations
d data (inputs and observations combined)

o…t
Given: u , z , perceptual model p(z | x

action model p(x t-1 t-1

X
Now we introduce the variables we will be using. X is the state variable, and

t is the state variable at time t. U is the inputs to your system, z is the
observations made by the sensors, and d just refers to inputs and
observations together. What the Bayes Filter is trying to find at any point in
time is the belief about the current state, which is the probability of xt given all
the data we’ve seen so far.

What we are given is the inputs, the observations, the perceptual model, which
is the probability that you’ll see a particular observation give n that you’re in
some state at time t, and the action model, which is the probability that you’ll
end up in state xt at time t, assuming that you started in state xt-1 at time t-1,
and input ut-1 to your system.

9

10

Outline
• Introduction to Particle Filters

– Demo!
–
– Quick Review of Robot Localization/Problem

– Overview of Particle Filters
– The Particle Filter Algorithm Step by Step

• Particle Filters in SLAM
• Particle Filters in Rover Fault Diagnosis

Formalization of General Problem: Bayes Filters

with Kalman Filters

Now I will give a quick review of robot localization and show what the problem
is with doing localization with Kalman filters.

10

11

Robot Localization
x = (x,y,q)
motion model

p(xt | x , u):

t t):

t-1 t-1

perceptual model p(z | x

So here’s the robot localization problem. You’re trying to track the state x,
which is made up of the (x,y) position of the robot as well as its orientation,
theta.

You have a motion model for the robot, which looks like the two figures in the
top right. If you start at the left end of the straight red line, pointed to the right,
and tell your robot to move forward some distance, you expect it to end up
somewhere in that cloud due to wheel slippage and the like. Darker regions
have higher probability. If you start at the left end of the wiggly red line, your
robot will have even more wheel slippage while turning (and it’s going a farther
distance), and so the resulting position uncertainty cloud is larger.

You also have a perceptual model for your robot, which is the probability that
you’ll see certain observations when you’re in a particular state xt. On the
bottom left is a picture of a robot in a map getting measurement s from its laser
rangefinders. Given a position and a map, you can use ray-tracing to get
expected measurements for each rangefinder angle. Then you can look at a
graph like the one on the bottom right, which is the result of characterizing
your sensor. As you can see, for a particular expected distance, your sensor
will give you a value near that distance with some reasonable probability. But
rangefinders often miss objects and report seeing something at the maximum
distance, so with some probability you expect the sensor to give you the max
distance instead. So given an actual measurement and an expected distance,
you can find the probability of getting that measurement using the graph.

11

12

Filters in Robot Localization
•

variables as single Gaussians
• What if robot could be in one of two

places?

The Problem with Kalman

Kalman Filters only represent state

The problem with Kalman filters is that they represent the state of the system
using only single Gaussians. As you can see in the diagram excerpted from
the demo just showed, sometimes it is necessary to have multimodal
hypotheses about where the robot might be. If you can only choose one of the
two possibilities (the most likely one), and you choose incorrectly, then it is
extremely difficult to recover from your mistake. Particle filters, on the other
hand, can keep track of as many hypotheses as there are particles, so if new
information shows up that causes you to shift your best hypothesis completely,
it is easy to do.

12

13

Outline
• Introduction to Particle Filters

– Demo!
–
– Quick Review of Robot Localization/Problem

– Overview of Particle Filters
– The Particle Filter Algorithm Step by Step

• Particle Filters in SLAM
• Particle Filters in Rover Fault Diagnosis

Formalization of General Problem: Bayes Filters

with Kalman Filters

Now I will give an overview of the basic premise of particle filters.

13

14

Particle Filters
(

•
• Each particle contains one set of values for

the state variables
•
• Find an approximate solution using a complex

solution using a simplified model (Gaussians)

aka sequential Monte Carlo)

Represents pdf as a set of samples (particles)

Good for non-Gaussian, multi-modal pdfs

model (arbitary pdf) rather than an exact

The basic idea of particle filters is that any pdf can be represented as a set of
samples (particles). If your pdf looks like the two-humped line in the figure,
you can represent that just by drawing a whole lot of samples from it, so that
the density of your samples in one area of the state space represents the
probability of that region. Each particle has one set of values for the state
variables. This method can represent any arbitrary distribution, making it good
for non-Gaussian, multi-modal pdfs. Again, the key idea is that you find an
approximate representation of a complex model (any arbitrary pdf) rather than
an exact representation of a simplified mode (Gaussians).

14

15

How to find samples
• t | d)

(call it p(x) for short)
• But don't have explicit representation of

• Can sample from prior belief (call it q(x))
• Sample from prior distribution
• Update using observations: for each

sample, compare p(x) to q(x) and adjust

Want to sample from posterior, p(x o…t

full pdf to sample from

appropriately (find importance weights)

So what you actually want samples of is your posterior, which we will call p(x)
for short. But how do you sample from your posterior? You don’t have an
explicit representation of your posterior to draw points from. But you do know
how to sample from your prior belief, because you had some belief from the
last time step that you know how to update with your motion model. Let’s call
the prior belief q(x). And you do know how to find, for any one x, what the
posterior probability is, based on your prior belief and your observations. So,
sample from q(x), and then for each sample that you made, update it using
what we will call an ‘importance weight’, based on the observations made.

15

16

Sample from prior belief q(x) (for instance, the uniform
distribution)

Compute importance weights, w(x) = p(x) /q(x)

Resample particles according to importance weights to get p(x)

Sample Importance Resampling

Samples with high weights chosen many times; density reflects pdf

Here is a graphical visualization of the importance resampling process. Let’s
say the posterior you’re trying to represent, as before, is the two-humped
dotted line. Even if you have no information to start, and your prior is just the
uniform distribution, you can still recover the properly sampled pdf of your
posterior p(x). First you sample from your prior (the uniform distribution). For
each of those samples, you can find the value of the posterior p(x). So for
each sample, you assign that sample a weight, w(x), equal to p(x)/q(x). At this
point, when the particles are weighted, you can use your highest-weighted
(highest-probability) sample as your best-guess state, or you can use the
weighted sum of particles to get a mean-equivalent, or you can use the
average of particles within some distance from your best particle for a more
intelligent best-guess. To represent the pdf properly with samples, though, we
want the density of the particles in any segment of the state space to be
proportional to the probability of that segment. As you can see in the middle
panel, the particles are still spaced evenly from uniform sampling. So in order
to adjust the densities properly, we resample the particles. That means we
want to keep the total number of particles the same, while increasing the
number of particles in the high-probability regions and decreasing the number
of particles in low-probability regions. So we draw particles (with replacement)
from the set of weighted particles according to their importance weights
(probabilities). High-weighted particles can be chosen a lot of times, whereas
low-weighted particles are likely not to be chosen at all. The result looks like
the third figure, in which the particles go back to being unweighted, and the
density of the particles properly represents the pdf.

16

17

true

false

Raint Raint+1 Raint+1 Raint+1

Prediction
(sample from
q(x))

Update
(weight
samples by
importance)

Resample
according to
weights to get
p(x) for new
time step

Belief

last time step

Discrete Importance Resampling

p(x) from

Another way to visualize the importance resampling process is to look at a
discrete example.

Let’s say you have a dynamic Bayes’ net with two states: Rain = true or Rain =
false. You’re trying to figure out whether or not it’s raining, but you can’t see
outside because you’re in an office with no windows. But let’s say that every
hour, your boss stops by, and either he brings an umbrella, or he doesn’t. If
he brings an umbrella, it’s likely raining, but maybe not, since some people
bring umbrellas for no reason. Likewise, if he doesn’t bring an umbrella, it’s
probably not raining, but it might be. So you have some model about the
probability that it’s raining, given that you think it was raini ng an hour ago and
your boss brings an umbrella, or doesn’t bring an umbrella, and so on. And
you also have some model about the transition probabilities of rain/not-rain,
saying that if it was raining an hour ago, it might have stopped with some
probability, and so on.

So we start, in the first column of boxes, Raint, with some belief p(x) from the
last time step. There are 8 particles in Rain=true and only 2 in Rain=false,
meaning that p(rain=true) is 8/(2+8) = 4/5, and p(rain=false) is 2/(2+8) = 1/5.

Next, we make a prediction about what the state will be in the next time step
based on our transition model, before looking at any observations. This is our
prior belief, q(x), and letting particles transition with some probability to each of
the two states gives us the new sample set from q(x). Now we have 6
particles in Rain=true, and 4 particles in Rain=false.

Then let’s say the boss comes in, and he’s not carrying an umbrella. Now, we
can find the probability of each particle based on our observation, according to
our perceptual model. So the Rain=true particles have low probabilities, so we 17

18

Why Resample?

• If you keep old particles around without

represented well

resampling:
– Particle depletion
– Areas with high probability in posterior not

– Density of particles doesn’t represent pdf

So, just to make clear why it is necessary to resample the particles:

If you just keep your old particles around forever without resampling them,
what happens is that your particles drift around according to your motion
model (transition probabilities for the next time step), but other than their
weights, they are unaffected by your observations. Highly unlikely particles
will be kept around and transitioned to more unlikely states, and you might
only have say, one particle in the area of high probability of your posterior. So
what you end up with is one particle with a way higher likelihood than any of
the other particles, and a whole lot of particles with almost-nil probability. This
is what we call ‘particle depletion’, because you in effect have only one
particle. And one particle doesn’t represent a pdf very well. If you don’t have
a lot of particles in the areas of your pdf with high probability, you won’t
represent the pdf very well. The density of your particles should be high in
high-probability areas, and low in low-probability areas. And so you have to
resample the particles, so that they continue to represent the pdf accurately
and keep track of many high-probability hypotheses, instead of tracking lots of
useless, low-probability hypotheses.

18

19

Outline
• Introduction to Particle Filters

– Demo!
–
– Quick Review of Robot Localization/Problem

– Overview of Particle Filters
– The Particle Filter Algorithm Step by Step

• Particle Filters in SLAM
• Particle Filters in Rover Fault Diagnosis

Formalization of General Problem: Bayes Filters

with Kalman Filters

Now we will show the particle filter algorithm step by step, using the example
of robot localization.

19

20

The Algorithm
• 0)

throw particles everywhere!
• For each time step, loop with three

phases:
1) Prediction
2) Update
3) Resample

To start: Sample from initial pdf, p(x
– For localization, no idea where robot is ->

To start the algorithm, we need the initial belief state, p(x0). This is just our
initial guess of the pdf. For robot localization, if we have no idea, we can just
scatter particles all over the map, as in the demo shown earlier.

For each time step, we then loop with three phases: prediction, update, and
resample. These will be explained in more detail in the next few slides.

20

21

Calculation of Belief for Robot Localization:

p(xt | d) = h p(zt | xt) p(xt | u , x) p(x | d) dx

Perception
model

Motion model

time step

Normalization
constant

current state

Prediction:Resample:

posterior
probability, our
belief about the
state variables

Update:

importance
weights

�o…t t-1 t-1 t-1 o…t-1 t-1

Pdf from last Pdf of

q(x) – the prior probability p(x) – the w(x) – the

The equation on this slide shows the formalization of the steps taken in the

particle filter algorithm. It is derived from applying Bayes rule to the posteior,

and then using the Markov assumption. While executing the particle filter

algorithm, we are calculating this equation from right to left.

First we start with the pdf from the last time step, and then we multiply it by the

motion model in the ‘prediction’ step to get q(x), the prior probability. The

integral is there only to say that we can end up in the same state in time t from

more than one state in time t-1, and thus we have to integrate over the states

from time t-1. But we do not have to worry about this detail in the particle filter

algorithm, since the particle representation takes care of the integral.

Next, we find the importance weights w(x) using the perception model and

normalize them so that they sum to 1.

q(x) times w(x) = p(x), the posterior probability, which we use resampling

based on the importance weights to achieve.

21

22

1) Prediction: for each particle, sample
and add random, noisy values from
action model

Resulting proposal
distribution (q(x))
approximates
p(xt | x , u) p(x | d) d x� t-1 t-1 t-1 o…t-1 t-1

In the prediction step, we take each particle and add a random sample from
the motion model. In the figure, the robot starts from the lower left, and moves
to the upper right. The resulting position, from the motion model, will be
somewhere in that cloud of particles. The resulting distribution of particles
approximates the prior distribution.

22

23

likelihood of getting the sensor

hypothesis

The weight associated
with each particle is

t t), normalized so that
all the weights sum to 1

2) Update: each particle’s weight is the

readings from that particle’s

w(x) = p(x)/q(x) = p(z | x

During the update step, we take the sensor measurements and assign each
particle a weight that is equal to the probability of observing the sensor
measurements from that particle’s state. Those weights are then normalized
so that they sum to 1. In the figure, the robot has observed the ‘stationary
robot’ landmark at the top left, and based on that measurement, it has
assigned weights to each particle. Darker particles have higher weights.

23

24

3) Resample: new set of particles are chosen
such that each particle survives in
proportion to its weight

�
posterior
probability

importance
weights

Resulting distribution is p(x):
p(xt | d) = h p(zt | xt) p(xt | ut , xt) p(x | d) dxt

q(x) – the prior probability p(x) – the w(x) – the

o …t -1 -1 t-1 o …t-1 -1

Finally, in the resample step, a new set of particles is chosen so that each
particle survives in proportion to its weight. As you can see in the picture, the
weighted cloud of particles turns into the somewhat more condensed and
smoother cloud of unweighted particles on the right. Highly unlikely particles
at the fringe are not chosen, and the highly likely particles near the center of
the cloud are replicated so that the high-probability region has a high density,
correctly representing p(x), our posterior distribution.

24

25

Intro Summary

•
sample densities

• New belief can be found using the

• Particle filters can be better than

Particle filters represent pdfs using

prediction-update-resample loop

Kalman filters for robot localization

25

26

Outline
• Introduction to Particle Filters

•
– Review of SLAM
– Classical solution and drawbacks
–
–

• Particle Filters in Rover Fault Diagnosis

Particle Filters in SLAM: FastSLAM

Presentation of FastSLAM
Demonstration in Matlab

In this part, I will present you a particular application of particle filtering to the

SLAM problem: Fast SLAM.

I will show you how this algorithm applies the principles explained by Kaijen in

her part, and how they differ somehow with these general principles.

I will first review briefly the SLAM problem, since we have seen it in this class

several weeks ago.

I will then present you the classical solution to the SLAM problem and its main

drawbacks.

Then, I will explain you how FastSLAM works.

Finally, I will end up with a short demo I wrote in Matlab.

26

27

Simultaneous Localization And
Mapping: A review

• Problem
The robot has to create a map and localize

itself on it

• Framework
Bayesian point of view:

()t t t t|,qP s z ,u , n

The SLAM problem consists of creating a map and localizing on it.

The framework used for it is the bayesian point of view, as described by

Kaijen.

In the next slide, I will explain the nomenclature for FastSLAM.

27

28

Nomenclature

st

l

Position of the robot

Positions of the landmarks
xtState:

zt

ut

d t
Input to the robot

Measurement
Data:

(The top part appears first)

As Kaijen mentionned, a typical particle filtering algorithm takes some data,

and outputs an estimate on the state of the system.

In FastSLAM, the data are the same as in the localization problem described

by Kaijen: they consist of both the input to the robot (go left, right, up, for

instance), and the measurements at each time step (there is a landmark at 3

feet in direction pi/4 with respect to the robot’s path).

Now, the state is slightly different from the localization problem. Indeed, here,

we want both to estimate the position of the robot and the positions of all the

landmarks surrounding it. As a result, the state consists of both of them. Note

that the landmarks are considered motionless in this case (no underscore ‘t’).

28

29

using particle filters

From:

Demonstration: laser-based SLAM

http://www.cs.washington.edu/ai/Mobile_Robotics/mcl/

Upfront, to show you guys how FastSLAM can perform, I show you a demo I

found on the web.

(I start the demo, and stop it after ten seconds to explain).

On this demo, you see a robot moving in the corridor of a building, while

mapping the walls, and localizing itself.

The green dot represents the actual position of the robot. The red lines are the

different guesses on the robot’s path (particles). The red dot, which we cannot

see very well, is the best estimate on the robot’s position. Finally, we see the

map of the building’s walls, as the robot moves along the corridors.

(starting demo again)

As the robot moves, you see the lines diverging, because the uncertainty on

the robot’s position is increasing as time evolves.

When the loop is closed, from the extra-information that the robot was actually

at the same place a while ago, it can reduce the uncertainty (we see the lines

gathering).

Finally, we see how robustly the map is improved over time, as the robot

moves. This is a feature of particle filtering: it is very robust.

29

30

Outline
• Introduction to Particle Filters

•
– Review of SLAM
– Classical solution and drawbacks
–
–

• Particle Filters in Rover Fault Diagnosis

Particle Filters in SLAM: FastSLAM

Presentation of FastSLAM
Demonstration in Matlab

(Introducing the second part of my talk: the classical solution to the SLAM
problem.)

30

31

Classical SLAM solution

• State: robot’s & landmarks’ positions

•
(EKF)

• Outputs: positions and uncertainties

Algorithm: Extended Kalman Filter

The classical SLAM solution uses:

A *huge* state, consisting of the robot’s position, and all the landmarks’
positions, in a single huge vector

The algorithm used is the extended kalman filter. We have already seen in this
class the kalman filter. The extended kalman filter is the same algorithm , but
extended to handle also non-linear models.

The output of the algorithm is the estimate on this huge state, together with the
uncertainty on it.

31

32

• Computational Complexity

• Data Association

• Gaussian assumption

Issues with EKF-only SLAM

What are the main issues with this classical way of solving the SLAM problem
?

First, as Kaijen mentionned, the Extended Kalman Filter assumes that the
probability density functions are gaussian, which may not be accurate. Since
Kaijen mentionned it, I won’t go any further on this point.

The second issue is the computational complexity of this approach (I will detail
this point in the next slide)

The third issue is the so-called ‘data association problem’, which I will also
explain.

32

33

Complexity

• Covariance matrix’s size O()K 2

�Cause: uncertainty on robot’s pose
correlates uncertainties on landmarks.

Diagonal terms:

Uncertainty on
the robot’s
landmarks’
positions

Non diagonal terms:

between robot’s
landmarks’ positions

Cross-correlations

The reason why the classical solution to SLAm is complex is that, since the
landmarks’ position uncertainty are correlated (I explain that in the next slide),
the algorithm must keep track of all the cross-correlations between them (non
diagonal term of the covariance matrix, in green here).

As a result, we must compute O(K^2) terms each time step.

With as many as 10000 landmarks, this can be computationally unaffordable.

33

34

Why the robot’s pose uncertainty
correlates landmarks positions

Assume the measurement:

A different assumption on the position of landmark 1
leads to a different place of landmark 2, since the
robot’s pose is unknown

L1

L2
R

L1
L1

R
L2

R
L2

This slide explains in further detail why the landmark’s positions are correlated
through the uncertainty on the robot’s position. I take an illustration. Supposing
we have an observation from the robot (L1, L2). Then, if we assume, for
instance from another observation, a given position for L1, through this
observation, we end up to a given position for L2. Now, if the assumption on
L1 is different, the conclusion on L2 is also. This is because the position of the
robot is not known precisely. As a result, this lack of knowledge on the robot’s
position correlates the positions of the landmarks.

34

35

Data Association

• Which landmark are we observing ?

• EKF assumes known.

• Not robust to data association error.

In real application, we may not know which landmark we are observing (is it
the one I have seen 10sec ago, or a new one ??), since many can have the
same shape and color, and even because we may not be able to use an object
recognition software.

The problem with the EKF-SLAM is that it assumes that this association is
known, and that it is very sensitive to errors in this association: it can diverge
when an error is made.

35

36

Outline
• Introduction to Particle Filters

•
– Review of SLAM
– Classical solution and drawbacks
–
–

• Particle Filters in Rover Fault Diagnosis

Particle Filters in SLAM: FastSLAM

Presentation of FastSLAM
Demonstration in Matlab

Moving to the presentation of FastSLAM as a way to solve the drawbacks of
the EKF SLAM.

36

37

one estimation of robot’s and landmarks’
positions

�
�Reduces complexity
�Huge number of landmarks (50,000) can be

handled

=>M filters with known robot’s position
estimating only landmarks’ positions

FastSLAM : Principle

Decorrelates landmarks’ position uncertainties

This slide presents the principle of particle-filtering slam, as opposed to EKF
SLAM.

Instead of having ONE big estimation process on this huge state, keeping
track of all the cross-correlations,

…

(make the cross and second line appear)

…

We replace it by M filters, each of which consider the robot’s position is
perfectly known, and estimates the landmarks’ positions only: the great
advantage of this idea is that it decorrelates the landmarks’ positions
uncertainties.

37

38

The decorrelation of the
landmarks’ positions

(tttttttttttt nuznuzspnuz ll =

()(B =˙

� Complexity MK instead of K 2

() tttt

n

tttt
n

tttt nuznuzspnuz �= ll

Independence:

Independent
Particles

) , , () , , ,) , , , (s p s p

) (). B p B A p A p

) , , () , , , , , , (s p s p

Extended Kalman Filters

This slides shows the maths behind the decorrelation of the landmarks’
positions.

Starting from computation of the probability density function of the state, we
arrive to the structure of FastSLAM, in which one pdf is represented by the
particles, and another, by the EKFs.

38

39

• Propagate each particle by applying dynamic
model to the robot’s position

• Generate data association hypothesis
according to their likelihood

• Update landmarks’ estimates for each particle

• Resample particles according to likelihood to
make the observation

• Observe landmarks

The Algorithm Step-by-step

Here, I present step by step what the algorithm does.

I go through each point in detail in the following slides.

39

40

• Propagate each particle by applying dynamic
model to the robot’s position

Initial
position of
the particle

Motion

probability
density function
for the possible
arrival position

Picking one particle
according to this

probability density
function

This slide is a detailed explanation of the propagation point of the previous
slide: when the robot moves, from the motion model, we know the posterior
probability density function. We pick one particle to replace the former one,
according to this pdf.

40

41

• Observe landmarks

Actual position
of the Robot

Line of
sight of the

robot

Detailed explanation of the observation: the robot observes the landmarks in
its line of sight.

41

42

• Generate data association hypothesis
according to their likelihood

• Computes the likelihoods of the observed
landmark being each of the ones already seen,
and of being a new one.

• Pick a data association hypothesis according to
these likelihoods.

Detail of the data association hypothesis generation: each hypothesis is given
a weight according to its likelihood, and each particle’s hypothesis is taken
according to this weight.

42

43

• Update landmarks’ estimates for each particle

The update step following an observation: the
estimated position of the landmark is
modified, together with its uncertainty, for
each particle.

Update

Detail of the update step: after an observation, the robot updates its estimate
concerning this landmark, and the uncertainty of this estimate.

43

44

• Resample particles according to likelihood to
make the observation

Each particle is attributed a
weight according to the
likelihood to make the
observation that was made

the best particles are
copied, and the worst are
deleted

Resampling

During the resampling step,

Detail of the resampling step: during this step, the particles are given weights
according to their likelihood (based on the observation that was made). Then,
the best ones are selected and copied, while the worst ones are deleted.

44

45

Results

From: Montemerlo et al., see bibliography

This slide presents a first result obtained by Montemerlo’s team. It represents
the evolution of the error in the positions of the robot and the landmarks as the
number of landmarks increases: the robo’s position error decreases, and the
landmarks’ error does not.

45

46

Results

From: Montemerlo et al., see bibliography

Another result from Montemerlo’s experiments. This is the evolution of the
error in the positions of the robot and the landmarks as the number of particle
increases. Interestingly enough, it does not change much as the number
increases beyond 100. As a result, they chose to use 100 particles for their
experiments.

46

47

Outline
• Introduction to Particle Filters

•
– Review of SLAM
– Classical solution and drawbacks
–
–

• Particle Filters in Rover Fault Diagnosis

Particle Filters in SLAM: FastSLAM

Presentation of FastSLAM
Demonstration in Matlab

Moving to the demo.

47

48

Demonstration: assumptions

• Robot in 2D
• Data association known
• Landmarks motionless
• Measurement: range & bearing
• Motion model
• 300 particles

This slide introduces my Matlab demo, stating the different assumptions I
made for it.

48

49

Demonstration: legend
Actual robot’s position

Estimated robot’s position

Line of sight

Actual landmarks’ positions

Estimated landmarks’ positions
area)

Particles: robot’s positions guesses

sand uncertainty (3

Here is the legend for the demo, since it contains many elements, and may be
confusing at first glance.

49

50

Here is the initial situation. It is messy since the initial uncertainties are huge,
to make you see the improvement over time. One can see the robot’s actual
and estimated position, its line of sight, the different particles, and the actual
and estimated –together with uncertainties- positions of the landmarks.

50

51

The robot moves one step ahead

51

52

During the first steps, I represented two steps: after moving (the particles
spread out because of the uncertainty in the motion), and after
observation+update+resampling (the particles gather since only the best ones
are selected through the resampling step.)

Here, after moving, the update+resampling steps had taken place. As a result,
the uncertainty on the landmarks’ positions is reduced for those within the line
of sight. The number of particles is also reduced, since, throug h resampling,
only the best ones are kept.

52

53

53

54

54

55

55

56

56

57

57

58

58

59

59

60

As the robot moves, one can see the uncertainty on the landmarks’ positions
decrease, and the spreading of the particles as well.

60

61

61

62

62

63

63

64

64

65

65

66

66

67

67

68

68

69

69

70

70

71

Last slide of the demo: the robot’s position is more accurately estimated, as
we see from the spreading of the particles. The landmarks’ positions are also
much more accurately estimated, as we see from the size of the blue circles
around them.

71

72

• Advantages
�Handle much more landmarks
�
�

problem

• Drawbacks
�Number of particles
�Depletion

FastSLAM Summary

Generalization to multi-robot easier
More robust to unknown data-association

This slide recaps the pros and cons of the particle filtering applied to the SLAM
problem. When presenting this slide, I mention the so-called ‘depletion’
problem, which consists of the number of particles going to zero through the
resampling stage.

72

73

Outline
• Introduction to Particle Filters
•
• Particle Filters in Rover Fault Diagnosis

– Challenges for rover fault diagnosis
– Fault diagnosis as state estimation
– Approximating a solution using particle filtering
– Particle filter enhancements

• Risk Sensitive Particle Filter
• Variable Resolution Particle Filter

Particle Filters in SLAM: FastSLAM

73

74

Challenges for Rovers
• Limited computational power
•

– Avoid additional damage, waste of resources
• Large number of possible faults

– Some faults only detectable using a series of
observations over time

• Noisy sensors
• Imprecise or unreliable actuators
• Uncertain environment

Require realtime detection of faults

(This slide is mostly self explanatory. I added the part below when giving the
talk.)

Some faults cannot be detected using a single set of observations. For
example, it may be normal for a wheel to slip occasionally but repeated
slipping could indicate a problem.

74

75

Outline
• Introduction to Particle Filters
•
• Particle Filters in Rover Fault Diagnosis

– Challenges for rover fault diagnosis
– Fault diagnosis as state estimation
– Approximating a solution using particle filtering
– Particle filter enhancements

• Risk Sensitive Particle Filter
• Variable Resolution Particle Filter

Particle Filters in SLAM: FastSLAM

75

76

Fault Diagnosis as State Estimation

• Hybrid discrete/continuous Hidden Markov
Model

• Discrete states represent operational modes
and fault states
– E.g. sending data, driving forward, right front

wheel jammed, left rear wheel slipping, etc.

• Continuous states represent observable state
of the rover
– E.g. wheel speed, motor current, tilt angle
– Measurements may be noisy

Since we have so many sources of uncertainty, it’s natural for us to represent
the problem using a probabilistic model. In this case, we choose a hybrid
Hidden Markov Model where the discrete states correspond to functional
modes and fault conditions in the rover. These are the hidden states in the
model since we cannot measure them directly.

The continuous states are the things that we *can* measure such as wheel
speed or motor current. These states are needed because we assume that
the sensors are noisy and therefore the observations are only approximations
of this continuous state.

76

77

Fault Diagnosis as State Estimation

• Construct a Bayesian Network (HMM)

, =x

, =x
= t z

� � ---
-

= 1,1,,,1,,,,,,
1,

),(),(),(
x

tt dxxxxxzx

Bayesian Filter:

NB: Control inputs omitted for clarity

 t at time state discrete t d

 t at time state continuous t c

 t at time nsobservatio

..0 () t c t d t d t d t c t c t d t c t c t d x p x p x z p x p
t d

Now we can construct a Bayesian network using these states and the
probabilities of transitioning between them. The equations are all similar to
what was presented in the first part of the talk except that our state has both
discrete and continuous components. The Bayesian filter equation changes
slightly because the new discrete state depends only on the previous discrete
state while the new continuous state depends on the previous continuous state
and the new discrete state. Essentially, the discrete state changes
independently while the continuous state depends on the discrete state. Note
that I have omitted the control inputs from my equations for clarity but they can
be added in just as they were in the earlier equations.

77

78

Fault Diagnosis as State Estimation

• Given previous state and new
observations, determine new state

sequence of observations to detect
dynamic faults

in general case

– Probability distribution over states
– Uses

– Bayesian Filter is intractable (exponential)

Using this type of model, we are able to track the current state and thereby
watch for faults. At each time step, we calculate the new state based on the
previous state and a new set of observations. However, by doing fault
detection using a Hidden Markov Model, we actually get something better. We
get a probability distribution across all the possible states. This is convenient
since it feeds directly into certain types of planners such as the POMDP
planners discussed in an earlier lecture. The Hidden Markov Model also
incorporates a series of observations into its estimate allowing us to detect
those dynamic faults I mentioned. However, the problem is that there is no
closed-form solution to the Bayesian filter equation when using arbitrary
probability distributions.

78

79

Outline
• Introduction to Particle Filters
•
• Particle Filters in Rover Fault Diagnosis

– Challenges for rover fault diagnosis
– Fault diagnosis as state estimation
– Approximating a solution using particle filtering
– Particle filter enhancements

• Risk Sensitive Particle Filter
• Variable Resolution Particle Filter

Particle Filters in SLAM: FastSLAM

79

80

Particle Filters to the Rescue
• Particle filter finds an approximate solution

by “sampling” the probability distribution

Normal

W2 stuck

W2 brokenW1 broken

W1 stuck

5%

0%

15%

25%

55%

So, naturally, we’ll use particle filters to find an approximate solution. Here is a
simple example model where we have one “normal” state and four “fault”
states. To find the probability that we’re in a particular state, we simply count
the particles in that state and divide by the total number of particles in the
system.

80

81

Hybrid State Particle Filter

)(

)(

)(

)(

)(
}{

1

1

00

0

(i)
c,t

(i)
d,tt

(i)
t

(i)
c,t

(i)
d,tc,t

(i)
c,t

(i)
d,td,t

(i)
d,t

(i)
d,c,

d,

(i)
c

(i)

,xw

,xxx

xx

x

,xx d

=

‹

‹

-

-

.

x y p

x p

x p

x p

x p

: as weights particle Calculate 3.

: state continuous then

: state discrete update first step prediction During 2.

state discrete the given on distributi state
continuous the from then , on distributi state discrete

the from sampling first by particles Create 1.

The calculations for the particle filter are the same as those presented earlier
except for the way the two different types of state are handled. Again, the
continuous states are dependent on the discrete state. Therefore, when we
create the initial particles, we sample from the discrete state prior distribution
first and then sample from the continuous state distribution given the discrete
state that we selected. Similarly, during the prediction step of the algorithm,
we update the discrete state first and then update the continuous state based
on the new discrete state. The importance weights are calculated using the
entire state, as before.

81

82

Particle Filter Advantages
• Can adjust number of particles to match

available computational resources
– Tradeoff between accuracy of estimate and

required computation

• Computationally tractable even with complex,

– Approximate solution to complex model vs.
exact solution to approximate model

non-linear, non-Gaussian models

What do we gain by using a particle filter approach to fault diagnosis?

First, we can easily adjust the amount of computation that we need to do. By
increasing or decreasing the number of particles in the system, we can trade
off the accuracy of our estimates for faster results. If we reduce the number of
particles, we have less work to do but our approximation will not be as close to
the correct answer. In fact, we can even adjust the number of particles on-the-
fly as conditions permit. For example, a rover may be able to change the
frequency of its processor depending on the amount of power that’s available.
Then, when a lot of light is falling on its solar panels, it can use a lot of
particles and get an accurate approximation and when it’s cloudy it can scale
back to fewer particles and reduce its accuracy.

This works because we’ve retained the complex model of the system and are
just approximating a solution with varying degrees of accuracy. This is in
contrast to approaches where the model is simplified (e.g. by assuming
Gaussian distributions) to deal with the intractability. In that case you’re stuck
with whatever approximations you’ve made and can’t improve your accuracy
on-demand.

For these reasons, particle filtering seems to be a good fit for rover
applications. The complex model can be created offline, before the rover is
sent out, and the rover need only perform the relatively simple particle update
calculations in the field. Once it is deployed, the rover can tailor its accuracy
to match its available resources.

82

83

Particle Filter Problem

• Very few particles in improbable states

• Increase the number of particles to
make sure all states are represented

states

– Lag time, high variance
– Faults are usually highly improbable!!!

– Increases computational requirements
– Lots of computation wasted on “normal”

However, there’s one problem with using particle filters and that is that
improbable states have very few or no particles. This can create two
problems. First, there can be a delay between when an event occurs and
when the corresponding state becomes likely. Normally, when something
happens, our observations will cause the particles in a particular state to be
weighted more heavily and they will multiply. However, if that state has no
particles in it, we have to wait for at least one particle to randomly transition
into it before it can start multiplying. This can take a long time if that particular
transitional probability is very low. Second, we can get a high variance in the
estimate for a state because the probability represented by a single particle is
larger that the probability we’re trying to estimate. Therefore, it will tend to flip
back and forth between zero and one particles rather than settling on a
consistent intermediate value. Of course, the reason these are problems is
that faults are usually improbable.

The obvious solution is to increase the number of particles so that each
particle represents a smaller probability. The problem with this is that you may
need an enormous number of particles to represent very small probabilities.
This will drastically increase the amount of computation you have to do. Plus,
all of the states will get more particles so most of the additional computation
will be wasted updating particles in the states that already had lots of particles.

(Note: I considered adding another slide to better explain the lag time problem
but everyone that I asked about it said that they got it just fine from what I
said.) 83

84

Outline
• Introduction to Particle Filters
•
• Particle Filters in Rover Fault Diagnosis

– Challenges for rover fault diagnosis
– Fault diagnosis as state estimation
– Approximating a solution using particle filtering
– Particle filter enhancements

• Risk Sensitive Particle Filter
• Variable Resolution Particle Filter

Particle Filters in SLAM: FastSLAM

84

85

Particle Filter Enhancements
• How can we ensure that improbable states are

represented without using lots of particles?
– Risk Sensitive Particle Filter

• Increase number of particles in “risky” or high cost
states

– Variable Resolution Particle Filter
• Group similar states together to pool their particles
• Break them apart if fault occurs

Robotics and Automation Magazine, June 2004
“Particle Filters for Rover Fault Diagnosis,” V Verma, G Gordon, R
Simmons, S Thrun,

There are various approaches to addressing this problem in the literature. I’m
going to show you two approaches presented by Verma et al. in the paper
reference here.

The goal of these enhancements is to make sure that all the states in a system
are represented by at least a few particles while still keeping the total number
of particles small.

(The rest of the slide is pretty self-explanatory.)

85

86

Outline
• Introduction to Particle Filters
•
• Particle Filters in Rover Fault Diagnosis

– Challenges for rover fault diagnosis
– Fault diagnosis as state estimation
– Approximating a solution using particle filtering
– Particle filter enhancements

• Risk Sensitive Particle Filter
• Variable Resolution Particle Filter

Particle Filters in SLAM: FastSLAM

86

87

Risk Sensitive Particle Filter
• Fault states get few particles but the cost of

miscalculating their probability is high
– “Normal” states get lots of particles but we don’t

need a highly accurate estimate

• Solution: Add a risk function to bias sampling
towards high cost states
– Particle filter samples from product of original

distribution and risk function
– Divide by risk function to find original distribution

(Self-explanatory)

87

88

RSPF Example

Normal

W2 broken W1 broken

Normal

W2 broken W1 broken

Without Risk Function With Risk Function

0519 *=P
)(

0512

Normal

P
*

=

)(
055

1 brokenW

P
*

=
)(

053

2 brokenW

P
*

=
050 *=P 051 *=P

.0
.0

x r

.0
x r

.0
x r

.0 .0

Here’s a simple example of the effect of the risk function. Without the risk
function, the normal state gets almost all of the particles while the fault states
are poorly represented. The estimated probability of each state can be
calculated directly from the number of particles in each state.

With the risk function, the sampling is biased so that the fault states get more
particles. We then need to divide by the bias in order to get the actual
probability distribution that we are trying to estimate.

88

89

RSPF Risk Function

• Choosing a good risk function is important but also
somewhat difficult (open research topic)

),(
)(

)()(
,

)(
,)(

1,

)(
,)(ii

ti

i
i

t xxyp
xr

w
-

=),()(
,

)(
,

)(ii
t

i
t xxypw =

),()(? ,,, tt yxxp),(,, tyxxp

• Risk function: maps a discrete state to a positive
real number

100)(
20)(

1)(

2

1

=
=

=

brokenW

brokenW

Normal:Ex

t d t c
t d

t d x r
t d t c

..0 t c t d t d x r ..0 t c t d

x r
x r
x r

The risk function simply maps a discrete state to a positive number. As an
example, we might assign a value of “1” to the normal state. Then we assign
larger values to the fault states to help ensure that they get enough particles.
Let’s say the W1 is a drive wheel and W2 is a steering wheel. If W1 were to
break (and we didn’t notice) we would probably just stop. Whereas if W2 were
to break and we didn’t notice, we might veer off in a random direction and
drive off a cliff. Therefore, we assign a higher value to W2 because it could
have a higher cost if we miss it.

The top arrow shows the distribution that we were originally trying to estimate
on the left and the new distribution that we want to estimate on the right.
Gamma is a normalization constant which ensures that the expression on the
right is a probability distribution. To switch from the first distribution to the
second, we only need to draw our original samples from the product of the risk
function and the initial distribution and then modify the importance weight
calculation as shown by the second arrow.

Clearly, the key to making this work well is finding a good risk function.
Unfortunately, this is still a topic of active research so there is currently no
accepted way to do this. An expert may be able to guess fairly decent risk
function. The authors also referred to another paper which used a POMDP
planner to create a risk function based on the potential future cost of
inaccurately tracking each state.

89

90

RSPF Experimental Setup

Time Step

Actual Robot State

Discrete States

9) W3 gear broken
8) W4 stuck

6) W2 stuck
5) W1 stuck
4) W4 motor broken
3) W3 motor broken
2) W1 or W2 broken

10) W4 gear broken

7) W3 stuck

1) Normal

Now, I ‘ll talk about an experiment from the paper where they compared a risk
sensitive particle filter to a classical one. In this case, they were modeling a
four wheeled rover with 10 discrete states; one normal state and nine fault
states. The states are arbitrarily numbered. The graph shows the actual state
of the robot as it changes during the simulation. It starts in the normal state
and then, at time step 17, wheel 3 becomes stuck against a rock. They then
tell the robot to back up, wheel 3 becomes unstuck and the rover operates
normally until time step 30 where the gear on wheel 4 breaks. It then remains
broken for the rest of the simulation.

90

91

RSPF Results

E
st

im
at

ed
S

ta
te

E

rr
or

100 particles 1000 particles 10,000 particles 100,000 particles
C

la
ss

ic
al

P
ar

tic
le

 F
ilt

er

E
st

im
at

ed
S

ta
te

E

rr
or

R
is

k
S

en
si

tiv
e

P
ar

tic
le

 F
ilt

er

Time Step

Actual Robot State

1-
0

lo
ss

1-

0
lo

ss

The top row of each set shows the estimated state of the robot during the
simulation. Here we see only the most likely state, not the full distribution.
The bottom row shows the error in the estimate; “0” if the estimate is correct
and “1” if it is wrong.

The classical particle filter does very poorly with anything less than 100,000
particles, either missing faults completely or detecting the wrong fault. With
100,000 particles, the estimate is close but there is still a lag between the fault
occurring and the rover detecting it.

With the risk sensitive particle filter, the estimate is already very good with only
100 particles and is perfect with 1000 or more particles. The authors did show
the actual risk function used for this experiment. They only say that it was
derived “heuristically.”

91

92

Outline
• Introduction to Particle Filters
•
• Particle Filters in Rover Fault Diagnosis

– Challenges for rover fault diagnosis
– Fault diagnosis as state estimation
– Approximating a solution using particle filtering
– Particle filter enhancements

• Risk Sensitive Particle Filter
• Variable Resolution Particle Filter

Particle Filters in SLAM: FastSLAM

92

93

Variable Resolution Particle Filter
• Many faults have similar symptoms

– E.g. Any stuck wheel on the right creates
a pull to the right

• Group these states
together so that the
new state has higher
probability and gets
more particles

This enhancement is based on the observation that some faults ha ve similar
symptoms. In this case, we can group those faults together into one abstract
state that contains the individual fault states. This hierarchical model is
constructed ahead of time by the rover designer and therefore relies on an
expert to appropriate group states together. In this example, we see a simple
model for a six-wheeled rover. There is one normal state (ND) and one fault
state for each of the six wheels being stuck. The states are labeled with an “L”
or “R” for “left” or “right” and an “F”, “M” or “R” for “front”, “middle” or “rear.” In
the higher-level model, all the “R” states are combined to form an abstract
“RS” (for “right side”) state. The same is done of the left side.

Without using the variable resolution particle filter, the fault states are likely to
have few or no particles. In this situation, when a fault does occur, the rover
will likely pick the wrong fault. For example, if a fault occurred in one of the
right wheels while there was only a particle in RM (as in the diagram on the
left), the RM particle would multiply and the rover would decide that the fault
was in RM. This happens because the symptoms for all the right side wheels
are similar.

When the states for the left and right sides are grouped together, it effectively
pools the particles from the individual states. This makes it more likely that the
abstract state will be well-represented. It also means that the rover does not
immediately try to pick a specific fault when something happens. Instead it
detects that some fault has occurred but delays the determination of the
specific fault. 93

94

Variable Resolution Particle Filter

• When a fault occurs,
the individual states
will become more
probable
– Can now break them

apart and still have
sufficient particles in
each

Once the rover has determined that a fault has occurred in one of the abstract
states, it can switch to a more refined model for that state to determine exactly
where the fault occurred. The particles from the large abstract state are
distributed to the individual states according to their prior probabilities and the
algorithm continues. In this example, since sufficient particles have
accumulated in RS it is decomposed into RF, RM and RR and its particles are
distributed among them.

94

95

VRPF Results

These results were collected using a model similar to the one in the previous
slides. Many simulations were run with varying numbers of particles. For
each experiment the KL divergence between the estimated probability
distribution and the actual probability distribution was computed. (A particle
filter with 1,000,000 particles was used as the actual distribut ion.) For large
numbers of particles, both the classical and variable resolution particle filters
performed comparably. This is because there were sufficient particles to
populate the faults states, even without using the variable resolution
enhancement. However, for small numbers of particles, the variable resolution
particle filter had much lower divergence as well as lower variance (as
indicated by the error bars).

95

96

Summary
• Rover fault diagnosis is challenging
• Particle filters find an approximate solution

to a complex HMM problem
–

•

• “Risk Sensitive” and “Variable Resolution”

particles needed to get a good answer

Allow non-linear, non-Gaussian models

Classical PFs have difficulty accurately
estimating low-probability states

PFs can dramatically reduce the number of

In summary, fault diagnosis is difficult for rovers. The models can be very
complex and the computational resources are very limited. Particle filters
allow us to find an approximate solution with whatever resources are available.
However, naively applying particle filtering to fault diagnosis can lead to poor
tracking of the most important states. Risk sensitive and variable resolution
particle filters are two techniques that can dramatically improve fault detection
while keeping the computational complexity low.

96

97

Recap
• Particle filters find approximate solutions to

Bayesian Network problems by:
– Sampling the state space
– Updating samples using transition probabilities
– Weighting the samples based on observations
– Resampling based on the weights

Hopefully in this lecture you’ve gotten an idea of how particle filters work and
the types of problems they can solve efficiently.

(Reiterate each step.)

97

98

Recap
• Many applications including SLAM and fault

diagnosis

• Efficient means of solving complex problems
– Large numbers of states
– Arbitrary probability distributions
– Tradeoff between accuracy and computation

• Key idea: Find an approximate solution using a
complex model rather than an exact solution
using a simplified model

We’ve shown you SLAM and fault diagnosis but there are also many other
applications of particle filters.

They are particularly useful when your (Bayesian network) problem has a large
number of states or requires arbitrary probability distributions either in the
results or in the model. They can also be useful when you want to be able to
tradeoff (possibly on-the-fly) between accuracy and computational complexity.

98

99

Bibliography

• Particle Filters
–

Automation (ICRA) 2003.

• Fast SLAM
–

Solution to the Simultaneous Localization and Mapping Problem,”
Proceedings of the AAAI National Conference on Artificial
Intelligence, 2002.

• Particle Filters in Robot Fault Diagnosis
–

Rover Fault Diagnosis,” Robotics and Automation Magazine,
June 2004

Rekleitis, Ioannis, “A Particle Filter Tutorial for Mobile Robot
Localization,” International Conference on Robotics and

Montemerlo, Thrun, Koller, Wegbreit, “FastSLAM: A Factored

V Verma, G Gordon, R Simmons, S Thrun, “Particle Filters for

99

