Intro to Probabilistic Relational Models

James Lenfestey, with Tom Temple and Ethan Howe

Outline

- Motivate problem
- Define PRMs

■ Extensions and future work

Our Goal

- Observation: the world consists of many distinct entities with similar behaviors
- Exploit this redundancy to make our models simpler
- This was the idea of FOL: use quantification to eliminate redundant sentences over ground literals

Example: A simple domain

- a set of students, $\mathcal{S}=\left\{s_{1}, s_{2}, s_{3}\right\}$
- a set of professors, $\mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\}$
- Well-Funded, Famous: $\mathcal{P} \rightarrow\{$ true, false $\}$
- Student-Of : $\mathcal{S} \times \mathcal{P} \rightarrow\{$ true, false $\}$
- Successful: $\mathcal{S} \rightarrow\{$ true, false $\}$

Example: A simple domain

We can express a certain self-evident fact in one sentence of FOL :

$$
\begin{aligned}
& \forall s \in \mathcal{S} \quad \forall p \in \mathscr{P} \\
& \quad \text { Famous }(p) \text { and Student-Of }(s, p) \\
& \quad \Rightarrow \operatorname{Successful}(s)
\end{aligned}
$$

Example: A simple domain

The same sentence converted to propositional logic:

$\left(\neg\left(p_{1} _\right.\right.$famous and student_of $\left.s_{-} s_{1} p_{1}\right)$ or $s_{1 _}$successful $)$and
$\left(\neg\left(p_{1} _\right.\right.$famous and student_of_ $\left.s_{2} _p_{1}\right)$ or $s_{2} _$successful $)$and
$\left(\neg\left(p_{1}\right.\right.$ famous and student_of_s3_p$)$ or $s_{3} _$successful $)$and
$\left(\neg\left(p_{2} _\right.\right.$famous and student_of $\left.s_{1} s_{1} p_{1}\right)$ or $s_{1 _}$successful $)$and
$\left(\neg\left(p_{2} _\right.\right.$famous and student_of_ $\left.s_{2} _p_{1}\right)$ or $s_{2} _$successful $)$and
$\left(\neg\left(p_{2} _\right.\right.$famous and student_of_s $\left.s_{3} _p_{1}\right)$ or $s_{3} _$successful $)$and
$\left(\neg\left(p_{3} _\right.\right.$famous and student_of_$\left.s_{1} _p_{1}\right)$ or $s_{1 _}$successful $)$and
$\left(\neg\left(p_{3} _f a m o u s\right.\right.$ and student_of_s2_p$)$ or $s_{2} _$successful $)$and
$\left(\neg\left(p_{3} _\right.\right.$famous and student_of_s $\left.3_{3} p_{1}\right)$ or $s_{3} _$successful $)$

Our Goal

■ Unfortunately, the real world is not so clear-cut

- Need a probabilistic version of FOL

■ Proposal: PRMs

Defining the Schema

- The world consists of base entities, partitioned into classes $X_{1}, X_{2}, \ldots, X_{n}$
- Elements of these classes share connections via a collection of relations $R_{1}, R_{2}, \ldots, R_{m}$
- Each entity type is characterized by a set of attributes, $\mathcal{A}\left(X_{i}\right)$. Each attribute $A_{j} \in \mathcal{A}\left(X_{i}\right)$ assumes values from a fixed domain, $V\left(A_{j}\right)$
- Defines the schema of a relational model

Continuing the example...

We can modify the domain previously given to this new framework:

- 2 classes: \mathcal{S}, \mathcal{P}
- 1 relation: Student-Of $\subset \mathcal{S} \times \mathcal{P}$
- $\mathcal{A}(S)=\{$ Success $\}$
- $\mathcal{A}(\mathcal{P})=\{$ Well-Funded, Famous $\}$

Instantiations

An instantiation I of the relational schema defines

- a set of base entities $O^{I}\left(X_{i}\right)$ for each class X_{i}

$$
O^{I^{\prime}}(\mathcal{P})=\left\{p_{1}, p_{2}, p_{3}\right\}, O^{I^{\prime}}(\mathcal{S})=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

Instantiations

An instantiation I of the relational schema defines
■ a set of base entities $O^{I}\left(X_{i}\right)$ for each class X_{i}

$$
O^{I^{\prime}}(\mathcal{P})=\left\{p_{1}, p_{2}, p_{3}\right\}, O^{I^{\prime}}(\mathcal{S})=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

- $R_{i}\left(X_{1}, \ldots, X_{k}\right) \subset O^{I}\left(X_{1}\right) \times \ldots \times O^{I}\left(X_{k}\right)$ for each R_{i} Student-Of $=\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{3}\right),\left(s_{3}, p_{3}\right)\right\}$

Instantiations

An instantiation I of the relational schema defines
■ a set of base entities $O^{I}\left(X_{i}\right)$ for each class X_{i} $O^{I^{\prime}}(\mathcal{P})=\left\{p_{1}, p_{2}, p_{3}\right\}, O^{I^{\prime}}(\mathcal{S})=\left\{s_{1}, s_{2}, s_{3}\right\}$

- $R_{i}\left(X_{1}, \ldots, X_{k}\right) \subset O^{I}\left(X_{1}\right) \times \ldots \times O^{I}\left(X_{k}\right)$ for each R_{i} Student-Of $=\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{3}\right),\left(s_{3}, p_{3}\right)\right\}$
- values for the attributes of each base entity for each class
p_{1}. Famous $=$ false,
p_{3}.Well-Funded $=$ true, s_{2}. Success $=$ true, \ldots

Slot chains

We can project any relation $R\left(X_{1}, \ldots, X_{k}\right)$ onto its i th and j th components to obtain a binary relation $\rho\left(X_{i}, X_{j}\right)$

Notation: for $x \in O^{I}\left(X_{i}\right)$, let

$$
x . \rho=\left\{y \in O^{I}\left(X_{j}\right) \mid(x, y) \in \rho\left(X_{i}, X_{j}\right)\right\}
$$

We call ρ a slot of X_{i}. Composition of slots (via transitive closure) gives a slot chain
E.g. x_{1}.Student-Of.Famous is the fame of x_{1} 's adviser

Probabilities, finally

■ The idea of a PRM is to express a joint probability distribution over all possible instantiations of a particular relational schema

- Since there are infinitely many possible instantiations to a given schema, specifying the full joint distribution would be very painful
- Instead, compute marginal probabilities over remaining variables given a partial instantiation

Partial Instantiations

A partial instantiation I^{\prime} specifies

- the sets $O^{I^{\prime}}\left(X_{i}\right)$

$$
O^{I^{\prime}}(\mathcal{P})=\left\{p_{1}, p_{2}, p_{3}\right\}, O^{I^{\prime}}(\mathcal{S})=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

Partial Instantiations

A partial instantiation I^{\prime} specifies

- the sets $O^{I^{\prime}}\left(X_{i}\right)$

$$
O^{I^{\prime}}(\mathcal{P})=\left\{p_{1}, p_{2}, p_{3}\right\}, O^{I^{\prime}}(\mathcal{S})=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

- the relations R_{j}

Student-Of $=\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{3}\right),\left(s_{3}, p_{3}\right)\right\}$

Partial Instantiations

A partial instantiation I^{\prime} specifies

- the sets $O^{I^{\prime}}\left(X_{i}\right)$

$$
O^{I^{\prime}}(\mathcal{P})=\left\{p_{1}, p_{2}, p_{3}\right\}, O^{I^{\prime}}(\mathcal{S})=\left\{s_{1}, s_{2}, s_{3}\right\}
$$

- the relations R_{j}

Student-Of $=\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{3}\right),\left(s_{3}, p_{3}\right)\right\}$

- values of some attributes for some of the base entities
p_{3}.Famous $=$ true, s_{1}.Success $=$ false

Locality of Influence

- BNs and PRMs are alike in that they both assume that real-world data exhibits locality of influence, the idea that most variables are influenced by only a few others
- Both models exploit this property through conditional independence
- PRMs go beyond BNs by assuming that there are few distinct patterns of influence in total

Conditional independence

- For a class X, values of the attribute $X . A$ are influenced by attributes in the set $P a(X . A)$ (its parents)
- $P a(X . A)$ contains attributes of the form $X . B$ (B an attribute) or $X . \tau . B$ (τ a slot chain)
- As in a BN, the value of $X . A$ is conditionally independent of the values of all other attributes, given its parents

An example

Captures the FOL sentence from before in a probabilistic framework.

Compiling into a BN

A PRM can be compiled into a BN, just as a statement in FOL can be compiled to a statement in PL

PRM

We can us this network to support inference over queries regarding base entities

Aggregates

- $\operatorname{Pa}(X . A)$ may contain $X . \tau . B$ for slot chain τ, which is generally a multiset.
■ $P a(X . A)$ dependent on the value of the set, not just the values in the multiset
- Representational challenge, again $|X . \tau . B|$ has no bound a priori

Aggregates

- γ summarizes the contents of $X . \tau . B$

■ Let $\gamma(X . \tau . B)$ be a parent of attributes of X
■ Many useful aggregates: mean, cardinality, median, etc

- Require computation of γ to be deterministic (we can omit it from the diagram)

Example: Aggregates

- Let $\gamma(A)=|A|$

■ Let Adviser-0f = Student-0f ${ }^{-1}$
■ e.g. $p_{1} \cdot \mathrm{Adviser}-\mathrm{Of}=\left\{s_{1}\right\}$,

$$
\begin{aligned}
& p_{2} \cdot A d v i s e r-0 f=\{ \} \\
& p_{3} \cdot A d v i s e r-O f=\left\{s_{2}, s_{3}\right\}
\end{aligned}
$$

- To represent the idea that a professor's funding is influenced by the number of advisees:

$$
\begin{gathered}
\operatorname{Pa}(\mathcal{P} \text {.Well-Funded })= \\
\{\mathcal{P} . \text { Famous, } \gamma(\mathcal{P} \text {.Adviser-Of })\}
\end{gathered}
$$

Extensions

- Reference uncertainty. Not all relations known a priori; may depend probabilistically on values of attributes. E.g., students prefer advisers with more funding
- Identity uncertainty. Distinct entities might not refer to distinct real-world objects
- Dynamic PRMs. Objects and relations change over time; can be unfolded into a DBN at the expense of a very large state space

Acknowledgements

■ "Approximate inference for first-order probabilistic languages", Pasula and Russell. Running example.
■ "Learning Probabilistic Relational Models", Friedman et al. Borrowed notation.

Resources

■ "Approximate inference for first-order probabilistic languages" gives a promising MCMC approach for addressing relational and identity uncertainty.

- "Inference in Dynamic Probabilistic Relational Models", Sanhai et al. Particle-filter based DPRM inference that uses abstraction smoothing to generalize over related objects.

Outline

Reasoning under Uncertainty

- How do we use prior knowledge and new observations to judge what is likely and what is not?
$P(s \mid$ observatio ns, prior knowledge $)$
- But that is a very large joint distribution

Bayesian Network

Features of Bayesian Networks

- A Bayesian Network is a Directed Acyclic Graph (DAG) with variables as nodes.
- Edges go from parent to child such that

Each child, x , has a conditional probability table
$\mathrm{P}(\mathrm{x} \mid \mathrm{parents}(\mathrm{x})$) that defines the affects that x feels from its parents.

- Intuitively, these edges codify direct relationships between nodes in a cause-effect manner
- The lack of an edge between nodes implies that they are conditionally independent.

Dynamic Bayesian Networks

- DBNs are BNs with a temporal regularity analogous to the HMM
- The full representation of a DBN grows with time.

Exact Inference in Bayesian Networks

- Queries of the network are fielded by "summing out" all of the non-query variables
- A variable is summed out by collecting all of the factors that contain it into a new factor. Then sum over all of the possible states of the variable to be eliminated.

Markov Assumptions

- First-order Markov process $-P\left(X_{t} \mid X_{0: t 1}\right)=P\left(X_{t} \mid X_{t-1}\right)$
- Markov assumption of evidence
$-\mathbf{P}\left(E_{\mid} \mid X_{0: t}, E_{0: t-1}\right)=P\left(E_{\mid} \mid X_{t}\right)$

Example: Umbrella Seen Again on
Day 2
$\mathrm{P}\left(\mathrm{R}_{2} \mid \mathrm{u}_{1}\right)=\mathrm{S} \mathrm{P}\left(\mathrm{R}_{2} \mid \mathrm{r}_{1}\right) \mathrm{P}\left(\mathrm{r}_{1} \mid \mathrm{u}_{1}\right)$
$\mathrm{P}\left(\mathrm{R}_{2} \mid \mathrm{u}_{1}, \mathrm{u}_{2}\right) \mathrm{r}_{ \pm}$a $\mathrm{P}\left(\mathrm{u}_{2} \mid \mathrm{R}_{2}\right) \mathrm{P}\left(\mathrm{R}_{2} \mid \mathrm{u}_{1}\right)$
$=\mathrm{a}\{0.9,0.2\}(0.818\{0.7,0.3\}+0.182\{0.3,0.7\})$
$=\mathrm{a}\{0.565,0.075\}=\{0.883,0.117\}$

Encapsulate Prediction

- Repeating actions at each step of time
- Formalize as procedure
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=$ FORWARD(previous state set, new evidence set)
- Only need to pass message from previous time step
$-f_{1: t+1}=a \operatorname{FORWARD}\left(f_{1: t}, e_{t+1}\right)$
- Can forget about previous times

Backwards message
$\mathrm{P}\left(\mathbf{X}_{\mathbf{k}+1: \mathrm{t}} \mid \mathbf{e}_{\mathbf{k}}\right)$
$=\mathrm{S}_{\mathbf{x}_{k+1}} \mathrm{P}\left(\mathbf{e}_{\mathbf{k}+1: \mathrm{t}} \mid \mathbf{x}_{\mathrm{k}+1}\right) \mathrm{P}\left(\mathbf{x}_{\mathbf{k}+1} \mid \mathbf{X}_{\mathbf{k}}\right)$ (Markov indep.)
$=S \mathrm{P}\left(\mathrm{e}_{\mathrm{k}+1}, \mathrm{e}_{\mathrm{k}+2: \mathrm{t}} \mid \mathbf{x}_{\mathbf{k}+1}\right) \mathrm{P}\left(\mathbf{x}_{\mathbf{k}+1} \mid \mathbf{X}_{\mathbf{k}}\right)$
$=\underset{\mathbf{x}_{k+1}}{\operatorname{S} P\left(\mathbf{e}_{\mathbf{k}+1} \mid \mathbf{x}_{\mathrm{k}+1}\right) \mathrm{P}\left(\mathbf{e}_{\mathbf{k}+2: t} \mid \mathbf{x}_{\mathbf{k}+1}\right) \mathrm{P}\left(\mathbf{x}_{\mathbf{k}+1} \mid \mathbf{X}_{\mathbf{k}}\right) .}$

Backwards procedure

- Repeating actions at each step of time
- Formalize as procedure
- $\mathrm{P}\left(\mathrm{e}_{\mathrm{k}+1: 1} \mid \mathrm{X}_{\mathrm{k}}\right)=$ BACKWARD(next state set, future evidence set)
- Message passing goes backwards in time
- $\mathbf{b}_{k+1: t}=\operatorname{BACKWARD}\left(b_{k+2: 1:} \mathbf{e}_{k+1: 1}\right)$

Forward-Backwards Algorithm

- Save FORWARD values at each time step
- Each time new data arrives, recompute BACKWARD values.
- Time Complexity O(t)
- Space Complexity O(t)
- Both can be bounded if only care about last k slices.

Exact Inference in DBNs

- There are some additional difficulties with exact inference in DBNs
- The factors grow to include all the states which sharply decreases the advantage over HMMs
- Constant memory requirement

Approximate Inference

- While a number of inference algorithms exist for the standard Bayes Net, few of them adapt well to the DBN.
- One that does adapt is Particle filtering, due to its ingenuitive use of resampling
- Particle filtering deals well with hybrid state

Learning

- The three components of a BN
- the probabilities
- the structure
- the variables
can all be learn automatically, though with varying degrees of complexity
- Sampling has trouble with unlikely events

How do we generate the Network?

- The network contains variables, edges and probabilities all of which need to be known ahead of time.
- Given all the variables and their relationships, it is relatively easy to estimate the probabilities from sample data, even if that sample data does not include every variable.

- Windows printer troubleshooter and goddamn paper-clip

Hidden Variable Learning

- Given a subset of the variables, generate new variables, structure and parameters.
- Greedy ascent on the output of Structure learning.
- Some risk of overfit

Recall a few important points

- Bayesian networks are an arbitrarily expressive model for joint probability distributions
- DBNs can be more compact than HMMs and therefore easier to learn and faster to use
- Dynamic Bayesian networks allow for reasoning in a temporal model

Tolerant of missing data, likewise able to exploit bonus data
Computationally, the compactness advantage is often lost in exact reasoning

- Particle Filters are an alternative for exploiting this compactness as long as the important probabilities are large enough to be sampled from.

