#### Intro to Probabilistic Relational Models

James Lenfestey, with Tom Temple and Ethan Howe

# Outline

- Motivate problem
- Define PRMs
- Extensions and future work

# **Our Goal**

- Observation: the world consists of many distinct entities with similar behaviors
- Exploit this redundancy to make our models simpler
- This was the idea of FOL: use quantification to eliminate redundant sentences over ground literals

# **Example: A simple domain**

a set of students, S = {s<sub>1</sub>, s<sub>2</sub>, s<sub>3</sub>}
a set of professors, P = {p<sub>1</sub>, p<sub>2</sub>, p<sub>3</sub>}
Well-Funded, Famous : P → {true, false}
Student-Of : S × P → {true, false}
Successful : S → {true, false}

# **Example: A simple domain**

We can express a certain self-evident fact in one sentence of FOL:

 $\forall s \in S \quad \forall p \in \mathcal{P} \\ \text{Famous}(p) \text{ and } \text{Student-Of}(s, p) \\ \Rightarrow \text{Successful}(s)$ 

### **Example: A simple domain**

#### The same sentence converted to propositional logic:

 $(\neg(p_1\_famous \text{ and } student\_of\_s_1\_p_1) \text{ or } s_1\_successful)$  and  $(\neg(p_1\_famous \text{ and } student\_of\_s_2\_p_1) \text{ or } s_2\_successful)$  and  $(\neg(p_1\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_2\_famous \text{ and } student\_of\_s_2\_p_1) \text{ or } s_1\_successful)$  and  $(\neg(p_2\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_2\_successful)$  and  $(\neg(p_2\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_2\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_2\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$  and  $(\neg(p_3\_famous \text{ and } student\_of\_s_3\_p_1) \text{ or } s_3\_successful)$ 

# **Our Goal**

- Unfortunately, the real world is not so clear-cut
- Need a probabilistic version of FOL
- Proposal: PRMs



# **Defining the Schema**

- The world consists of base entities, partitioned into classes  $X_1, X_2, ..., X_n$
- Elements of these classes share connections via a collection of relations  $R_1, R_2, ..., R_m$
- Each entity type is characterized by a set of attributes,  $\mathcal{A}(X_i)$ . Each attribute  $A_j \in \mathcal{A}(X_i)$  assumes values from a fixed domain,  $V(A_j)$
- Defines the *schema* of a relational model

# **Continuing the example...**

We can modify the domain previously given to this new framework:

• 2 classes: S, P

**1 relation:** Student-Of  $\subset S \times P$ 

• 
$$\mathcal{A}(\mathcal{S}) = \{ \texttt{Success} \}$$

•  $\mathcal{A}(\mathcal{P}) = \{ \texttt{Well-Funded}, \texttt{Famous} \}$ 

### Instantiations

An instantiation *I* of the relational schema defines **a** set of base entities  $O^{I}(X_{i})$  for each class  $X_{i}$  $O^{I'}(\mathcal{P}) = \{p_{1}, p_{2}, p_{3}\}, O^{I'}(\mathcal{S}) = \{s_{1}, s_{2}, s_{3}\}$ 

### Instantiations

An instantiation *I* of the relational schema defines a set of base entities  $O^{I}(X_{i})$  for each class  $X_{i}$   $O^{I'}(\mathcal{P}) = \{p_{1}, p_{2}, p_{3}\}, O^{I'}(\mathcal{S}) = \{s_{1}, s_{2}, s_{3}\}$  $R_{i}(X_{1}, ..., X_{k}) \subset O^{I}(X_{1}) \times ... \times O^{I}(X_{k})$  for each  $R_{i}$ 

Student-Of = { $(s_1, p_1), (s_2, p_3), (s_3, p_3)$ }

### Instantiations

An instantiation I of the relational schema defines

- a set of base entities  $O^I(X_i)$  for each class  $X_i$  $O^{I'}(\mathcal{P}) = \{p_1, p_2, p_3\}, O^{I'}(\mathcal{S}) = \{s_1, s_2, s_3\}$
- $R_i(X_1,...,X_k) \subset O^I(X_1) \times ... \times O^I(X_k)$  for each  $R_i$ Student-Of = { $(s_1, p_1), (s_2, p_3), (s_3, p_3)$ }
- values for the attributes of each base entity for each class

 $p_1$ .Famous = false,  $p_3$ .Well-Funded = true,  $s_2$ .Success = true,...

# **Slot chains**

We can project any relation  $R(X_1, ..., X_k)$  onto its *i*th and *j*th components to obtain a binary relation  $\rho(X_i, X_j)$ 

Notation: for  $x \in O^{I}(X_{i})$ , let  $x \cdot \rho = \{y \in O^{I}(X_{j}) | (x, y) \in \rho(X_{i}, X_{j})\}$ 

We call  $\rho$  a *slot* of  $X_i$ . Composition of slots (via transitive closure) gives a *slot chain* 

E.g.  $x_1$ .Student-Of.Famous is the fame of  $x_1$ 's adviser

# **Probabilities, finally**

- The idea of a PRM is to express a joint probability distribution over all possible instantiations of a particular relational schema
- Since there are infinitely many possible instantiations to a given schema, specifying the full joint distribution would be very painful
- Instead, compute marginal probabilities over remaining variables given a *partial* instantiation

# **Partial Instantiations**

A partial instantiation I' specifies • the sets  $O^{I'}(X_i)$  $O^{I'}(\mathcal{P}) = \{p_1, p_2, p_3\}, O^{I'}(\mathcal{S}) = \{s_1, s_2, s_3\}$ 

### **Partial Instantiations**

A partial instantiation I' specifies • the sets  $O^{I'}(X_i)$   $O^{I'}(\mathcal{P}) = \{p_1, p_2, p_3\}, O^{I'}(\mathcal{S}) = \{s_1, s_2, s_3\}$ • the relations  $R_j$ Student-Of =  $\{(s_1, p_1), (s_2, p_3), (s_3, p_3)\}$ 

### **Partial Instantiations**

A partial instantiation I' specifies

- the sets  $O^{I'}(X_i)$  $O^{I'}(\mathcal{P}) = \{p_1, p_2, p_3\}, \ O^{I'}(\mathcal{S}) = \{s_1, s_2, s_3\}$
- the relations  $R_j$ Student-Of = { $(s_1, p_1), (s_2, p_3), (s_3, p_3)$ }

values of some attributes for some of the base entities
no Economic true of Success - false

 $p_3$ .Famous = *true*,  $s_1$ .Success = *false* 

# **Locality of Influence**

- BNs and PRMs are alike in that they both assume that real-world data exhibits *locality of influence*, the idea that most variables are influenced by only a few others
- Both models exploit this property through conditional independence
- PRMs go beyond BNs by assuming that there are few distinct patterns of influence in total

### **Conditional independence**

- For a class X, values of the attribute X.A are influenced by attributes in the set Pa(X.A) (its parents)
- Pa(X.A) contains attributes of the form X.B (B an attribute) or  $X.\tau.B$  ( $\tau$  a slot chain)
- As in a BN, the value of X.A is conditionally independent of the values of all other attributes, given its parents

### An example



Captures the FOL sentence from before in a probabilistic framework.

# **Compiling into a BN**

A PRM can be compiled into a BN, just as a statement in FOL can be compiled to a statement in PL



# PRM



We can us this network to support inference over queries regarding base entities

# Aggregates

- Pa(X.A) may contain  $X.\tau.B$  for slot chain  $\tau$ , which is generally a multiset.
- Pa(X.A) dependent on the value of the set, not just the values in the multiset
- Representational challenge, again  $|X.\tau.B|$  has no bound a priori

# Aggregates

- $\gamma$  summarizes the contents of  $X.\tau.B$
- Let  $\gamma(X.\tau.B)$  be a parent of attributes of X
- Many useful aggregates: mean, cardinality, median, etc
- Require computation of γ to be deterministic (we can omit it from the diagram)

# **Example: Aggregates**

• Let  $\gamma(A) = |A|$ 

• Let  $Adviser-Of = Student-Of^{-1}$ 

To represent the idea that a professor's funding is influenced by the number of advisees:

 $Pa(\mathcal{P}.Well-Funded) =$ 

 $\{\mathcal{P}.\texttt{Famous}, \gamma(\mathcal{P}.\texttt{Adviser-Of})\}$ 

### **Extensions**

- Reference uncertainty. Not all relations known a priori; may depend probabilistically on values of attributes. E.g., students prefer advisers with more funding
- Identity uncertainty. Distinct entities might not refer to distinct real-world objects
- Dynamic PRMs. Objects and relations change over time; can be unfolded into a DBN at the expense of a very large state space

# Acknowledgements

- "Approximate inference for first-order probabilistic languages", Pasula and Russell. Running example.
- "Learning Probabilistic Relational Models", Friedman et al. Borrowed notation.

### Resources

- "Approximate inference for first-order probabilistic languages" gives a promising MCMC approach for addressing relational and identity uncertainty.
- "Inference in Dynamic Probabilistic Relational Models", Sanhai et al. Particle-filter based DPRM inference that uses abstraction smoothing to generalize over related objects.



#### Outline

- Intro to Dynamic Bayesian Nets (Tom)
- Exact inference in DBNs with demo (Ethan)
- Approximate inference and learning (Tom)
- Probabilistic Relational Models (James)

#### **Reasoning under Uncertainty**

- How do we use prior knowledge and new observations to judge what is likely and what is not?
  - P(s | observatio ns, prior knowledge)
- But that is a very large joint distribution



#### **Bayesian Network**

- A Bayesian Network is a Directed Acyclic Graph (DAG) with variables as nodes.
- Edges go from parent to child such that
- Each child, x, has a conditional probability table
   P(x|parents(x)) that defines the affects that x feels from its parents.
- Intuitively, these edges codify *direct relationships* between nodes in a cause effect manner.
- The lack of an edge between nodes implies that they are conditionally independent.

#### **Features of Bayesian Networks**

- Arbitrarily descriptive; allows encapsulation of all the available prior knowledge
- The model makes no distinction between
   observed variables and inferred variables
- The DAG restriction is somewhat limiting









- Queries of the network are fielded by "summing out" all of the non-query variables
- A variable is summed out by collecting all of the factors that contain it into a new factor. Then sum over all of the possible states of the variable to be eliminated.













$$= a P(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) S P(\mathbf{X}_{t+1} | \mathbf{x}_t) P(\mathbf{x}_t | \mathbf{e}_{1:t})$$





#### **Encapsulate Prediction**

- Repeating actions at each step of time
- Formalize as procedure

   P(X<sub>1+1</sub>|e<sub>1:1+1</sub>) = FORWARD(previous state set, new evidence set)
- Only need to pass message from previous time step
  - f<sub>1:t+1</sub>= a FORWARD(f<sub>1:t</sub>,e<sub>t+1</sub>)
- Can forget about previous times

#### Smoothing: Break into data before and after

$$\begin{split} P(\mathbf{X}_{k}|\mathbf{e}_{1:t}) &= P(\mathbf{X}_{k}|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t}) \quad (\text{divide evidence}) \\ &= a P(\mathbf{X}_{k}|\mathbf{e}_{1:k}) P(\mathbf{e}_{k+1:t}|\mathbf{X}_{k},\mathbf{e}_{1:k}) \quad (\text{Bayes' rule}) \\ &= a P(\mathbf{X}_{k}|\mathbf{e}_{1:k}) P(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}) \quad (\text{Markov Indep.}) \\ &= a \mathbf{f}_{1:k} \mathbf{b}_{k+1:t} \end{split}$$



#### **Backwards procedure**

- Repeating actions at each step of time
- Formalize as procedure
  - P(e<sub>k+1:t</sub>|X<sub>k</sub>) = BACKWARD(next state set, future evidence set)
- Message passing goes backwards in time
   b<sub>k+1:t</sub>= BACKWARD(b<sub>k+2:t</sub>,e<sub>k+1:t</sub>)









#### Approximate Inference

- While a number of inference algorithms exist for the standard Bayes Net, few of them adapt well to the DBN.
- One that does adapt is Particle filtering, due to its ingenuitive use of resampling

   Particle filtering deals well with hybrid state
- Sampling has trouble with unlikely events

#### Learning

- The three components of a BN - the probabilities
  - the structure
  - the variables
  - can all be learn automatically, though with varying degrees of complexity











#### **Hidden Variable Learning**

- Given a subset of the variables, generate new variables, structure and parameters.
- Greedy ascent on the output of Structure learning.
- Some risk of overfit





#### In Depth Training

- Since the DBN model doesn't make a distinction between observed variables and hidden variables, it can learn a model with access to data that we don't have during prediction.
- For example, in Speech Recognition, - We know that sounds are made by the pose of
  - the lips mouth and tongue
  - While training we can measure the pose

<section-header>

#### **Recall a few important points**

- Bayesian networks are an arbitrarily expressive model for joint probability distributions
- DBNs can be more compact than HMMs and therefore easier to learn and faster to use
- Dynamic Bayesian networks allow for reasoning in a temporal model
  - Tolerant of missing data, likewise able to exploit bonus data
     Computationally, the compactness advantage is often lost in exact reasoning
- Particle Filters are an alternative for exploiting this compactness as long as the important probabilities are large enough to be sampled from.