Intro to Probabilistic Relational Models

James Lenfestey, with Tom Temple and Ethan Howe

Outline

- Motivate problem
- Define PRMs
- Extensions and future work

Our Goal

- Observation: the world consists of many distinct entities with similar behaviors
- Exploit this redundancy to make our models simpler
- This was the idea of FOL: use quantification to eliminate redundant sentences over ground literals

Example: A simple domain

a set of students, S = {s₁, s₂, s₃}
a set of professors, P = {p₁, p₂, p₃}
Well-Funded, Famous : P → {true, false}
Student-Of : S × P → {true, false}
Successful : S → {true, false}

Example: A simple domain

We can express a certain self-evident fact in one sentence of FOL:

 $\forall s \in S \quad \forall p \in \mathcal{P} \\ \text{Famous}(p) \text{ and } \text{Student-Of}(s, p) \\ \Rightarrow \text{Successful}(s)$

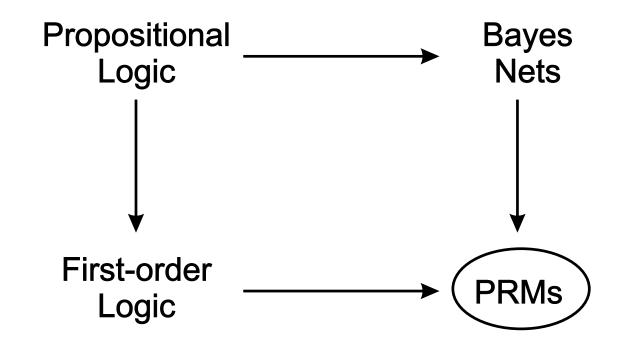
Example: A simple domain

The same sentence converted to propositional logic:

 $(\neg(p_1_famous \text{ and } student_of_s_1_p_1) \text{ or } s_1_successful)$ and $(\neg(p_1_famous \text{ and } student_of_s_2_p_1) \text{ or } s_2_successful)$ and $(\neg(p_1_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_2_famous \text{ and } student_of_s_2_p_1) \text{ or } s_1_successful)$ and $(\neg(p_2_famous \text{ and } student_of_s_3_p_1) \text{ or } s_2_successful)$ and $(\neg(p_2_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_2_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_2_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$ and $(\neg(p_3_famous \text{ and } student_of_s_3_p_1) \text{ or } s_3_successful)$

Our Goal

- Unfortunately, the real world is not so clear-cut
- Need a probabilistic version of FOL
- Proposal: PRMs



Defining the Schema

- The world consists of base entities, partitioned into classes $X_1, X_2, ..., X_n$
- Elements of these classes share connections via a collection of relations $R_1, R_2, ..., R_m$
- Each entity type is characterized by a set of attributes, $\mathcal{A}(X_i)$. Each attribute $A_j \in \mathcal{A}(X_i)$ assumes values from a fixed domain, $V(A_j)$
- Defines the *schema* of a relational model

Continuing the example...

We can modify the domain previously given to this new framework:

• 2 classes: S, P

1 relation: Student-Of $\subset S \times P$

•
$$\mathcal{A}(\mathcal{S}) = \{ \texttt{Success} \}$$

• $\mathcal{A}(\mathcal{P}) = \{ \texttt{Well-Funded}, \texttt{Famous} \}$

Instantiations

An instantiation *I* of the relational schema defines **a** set of base entities $O^{I}(X_{i})$ for each class X_{i} $O^{I'}(\mathcal{P}) = \{p_{1}, p_{2}, p_{3}\}, O^{I'}(\mathcal{S}) = \{s_{1}, s_{2}, s_{3}\}$

Instantiations

An instantiation *I* of the relational schema defines a set of base entities $O^{I}(X_{i})$ for each class X_{i} $O^{I'}(\mathcal{P}) = \{p_{1}, p_{2}, p_{3}\}, O^{I'}(\mathcal{S}) = \{s_{1}, s_{2}, s_{3}\}$ $R_{i}(X_{1}, ..., X_{k}) \subset O^{I}(X_{1}) \times ... \times O^{I}(X_{k})$ for each R_{i}

Student-Of = { $(s_1, p_1), (s_2, p_3), (s_3, p_3)$ }

Instantiations

An instantiation I of the relational schema defines

- a set of base entities $O^I(X_i)$ for each class X_i $O^{I'}(\mathcal{P}) = \{p_1, p_2, p_3\}, O^{I'}(\mathcal{S}) = \{s_1, s_2, s_3\}$
- $R_i(X_1,...,X_k) \subset O^I(X_1) \times ... \times O^I(X_k)$ for each R_i Student-Of = { $(s_1, p_1), (s_2, p_3), (s_3, p_3)$ }
- values for the attributes of each base entity for each class

 p_1 .Famous = false, p_3 .Well-Funded = true, s_2 .Success = true,...

Slot chains

We can project any relation $R(X_1, ..., X_k)$ onto its *i*th and *j*th components to obtain a binary relation $\rho(X_i, X_j)$

Notation: for $x \in O^{I}(X_{i})$, let $x \cdot \rho = \{y \in O^{I}(X_{j}) | (x, y) \in \rho(X_{i}, X_{j})\}$

We call ρ a *slot* of X_i . Composition of slots (via transitive closure) gives a *slot chain*

E.g. x_1 .Student-Of.Famous is the fame of x_1 's adviser

Probabilities, finally

- The idea of a PRM is to express a joint probability distribution over all possible instantiations of a particular relational schema
- Since there are infinitely many possible instantiations to a given schema, specifying the full joint distribution would be very painful
- Instead, compute marginal probabilities over remaining variables given a *partial* instantiation

Partial Instantiations

A partial instantiation I' specifies • the sets $O^{I'}(X_i)$ $O^{I'}(\mathcal{P}) = \{p_1, p_2, p_3\}, O^{I'}(\mathcal{S}) = \{s_1, s_2, s_3\}$

Partial Instantiations

A partial instantiation I' specifies • the sets $O^{I'}(X_i)$ $O^{I'}(\mathcal{P}) = \{p_1, p_2, p_3\}, O^{I'}(\mathcal{S}) = \{s_1, s_2, s_3\}$ • the relations R_j Student-Of = $\{(s_1, p_1), (s_2, p_3), (s_3, p_3)\}$

Partial Instantiations

A partial instantiation I' specifies

- the sets $O^{I'}(X_i)$ $O^{I'}(\mathcal{P}) = \{p_1, p_2, p_3\}, \ O^{I'}(\mathcal{S}) = \{s_1, s_2, s_3\}$
- the relations R_j Student-Of = { $(s_1, p_1), (s_2, p_3), (s_3, p_3)$ }

values of some attributes for some of the base entities
no Economic true of Success - false

 p_3 .Famous = *true*, s_1 .Success = *false*

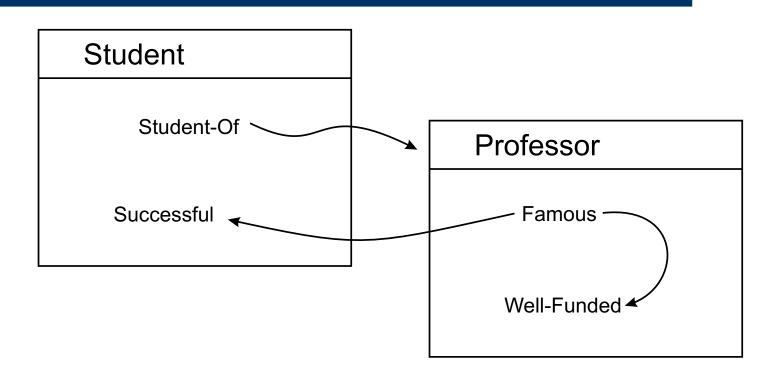
Locality of Influence

- BNs and PRMs are alike in that they both assume that real-world data exhibits *locality of influence*, the idea that most variables are influenced by only a few others
- Both models exploit this property through conditional independence
- PRMs go beyond BNs by assuming that there are few distinct patterns of influence in total

Conditional independence

- For a class X, values of the attribute X.A are influenced by attributes in the set Pa(X.A) (its parents)
- Pa(X.A) contains attributes of the form X.B (B an attribute) or $X.\tau.B$ (τ a slot chain)
- As in a BN, the value of X.A is conditionally independent of the values of all other attributes, given its parents

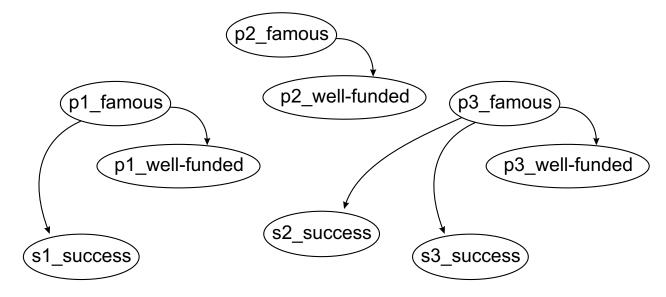
An example



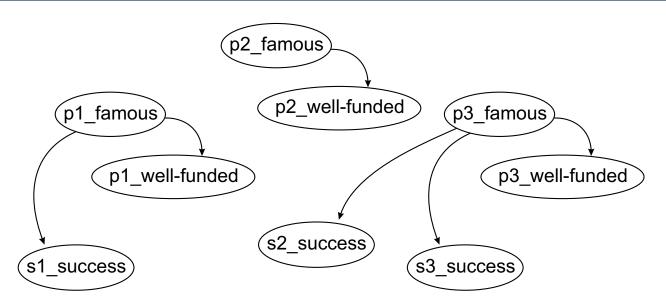
Captures the FOL sentence from before in a probabilistic framework.

Compiling into a BN

A PRM can be compiled into a BN, just as a statement in FOL can be compiled to a statement in PL



PRM



We can us this network to support inference over queries regarding base entities

Aggregates

- Pa(X.A) may contain $X.\tau.B$ for slot chain τ , which is generally a multiset.
- Pa(X.A) dependent on the value of the set, not just the values in the multiset
- Representational challenge, again $|X.\tau.B|$ has no bound a priori

Aggregates

- γ summarizes the contents of $X.\tau.B$
- Let $\gamma(X.\tau.B)$ be a parent of attributes of X
- Many useful aggregates: mean, cardinality, median, etc
- Require computation of γ to be deterministic (we can omit it from the diagram)

Example: Aggregates

• Let $\gamma(A) = |A|$

• Let $Adviser-Of = Student-Of^{-1}$

To represent the idea that a professor's funding is influenced by the number of advisees:

 $Pa(\mathcal{P}.Well-Funded) =$

 $\{\mathcal{P}.\texttt{Famous}, \gamma(\mathcal{P}.\texttt{Adviser-Of})\}$

Extensions

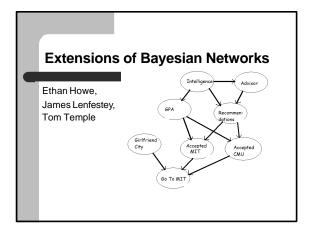
- Reference uncertainty. Not all relations known a priori; may depend probabilistically on values of attributes. E.g., students prefer advisers with more funding
- Identity uncertainty. Distinct entities might not refer to distinct real-world objects
- Dynamic PRMs. Objects and relations change over time; can be unfolded into a DBN at the expense of a very large state space

Acknowledgements

- "Approximate inference for first-order probabilistic languages", Pasula and Russell. Running example.
- "Learning Probabilistic Relational Models", Friedman et al. Borrowed notation.

Resources

- "Approximate inference for first-order probabilistic languages" gives a promising MCMC approach for addressing relational and identity uncertainty.
- "Inference in Dynamic Probabilistic Relational Models", Sanhai et al. Particle-filter based DPRM inference that uses abstraction smoothing to generalize over related objects.

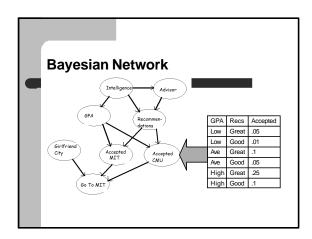


Outline

- Intro to Dynamic Bayesian Nets (Tom)
- Exact inference in DBNs with demo (Ethan)
- Approximate inference and learning (Tom)
- Probabilistic Relational Models (James)

Reasoning under Uncertainty

- How do we use prior knowledge and new observations to judge what is likely and what is not?
 - P(s | observatio ns, prior knowledge)
- But that is a very large joint distribution

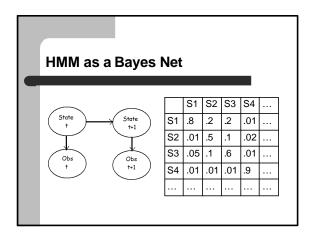


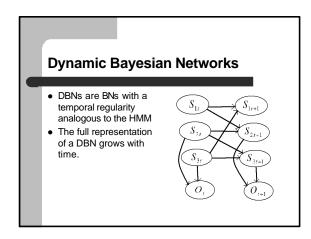
Bayesian Network

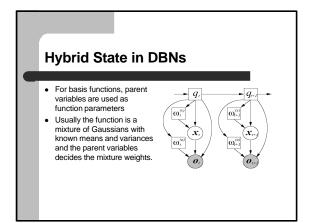
- A Bayesian Network is a Directed Acyclic Graph (DAG) with variables as nodes.
- Edges go from parent to child such that
- Each child, x, has a conditional probability table
 P(x|parents(x)) that defines the affects that x feels from its parents.
- Intuitively, these edges codify *direct relationships* between nodes in a cause effect manner.
- The lack of an edge between nodes implies that they are conditionally independent.

Features of Bayesian Networks

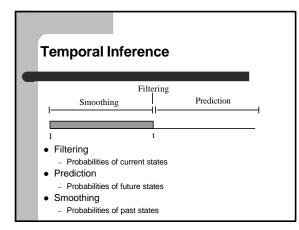
- Arbitrarily descriptive; allows encapsulation of all the available prior knowledge
- The model makes no distinction between
 observed variables and inferred variables
- The DAG restriction is somewhat limiting

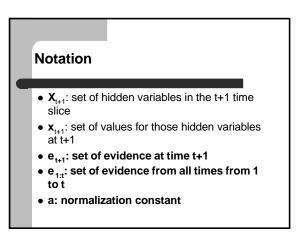


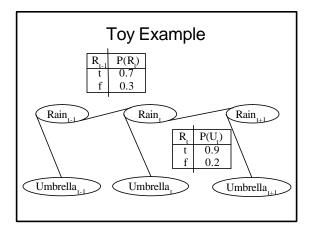


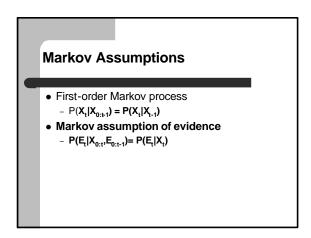


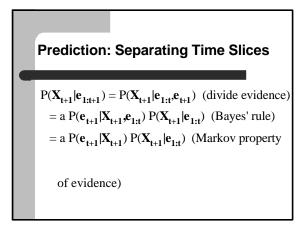
- Queries of the network are fielded by "summing out" all of the non-query variables
- A variable is summed out by collecting all of the factors that contain it into a new factor. Then sum over all of the possible states of the variable to be eliminated.

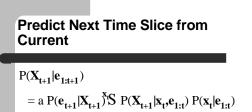




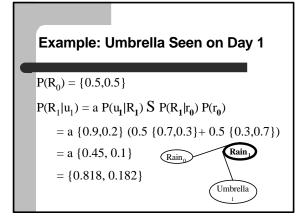


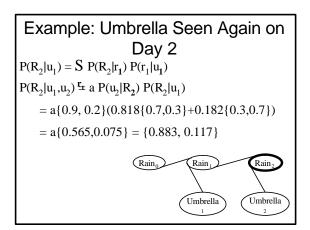






$$= a P(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) S P(\mathbf{X}_{t+1} | \mathbf{x}_t) P(\mathbf{x}_t | \mathbf{e}_{1:t})$$





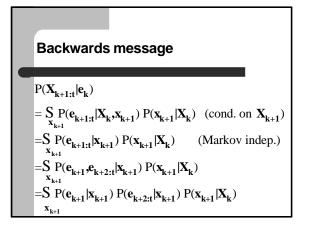
Encapsulate Prediction

- Repeating actions at each step of time
- Formalize as procedure

 P(X₁₊₁|e_{1:1+1}) = FORWARD(previous state set, new evidence set)
- Only need to pass message from previous time step
 - f_{1:t+1}= a FORWARD(f_{1:t},e_{t+1})
- Can forget about previous times

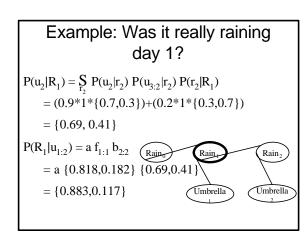
Smoothing: Break into data before and after

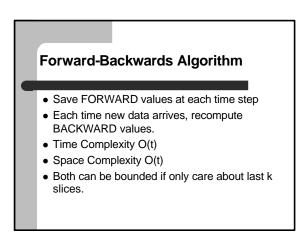
$$\begin{split} P(\mathbf{X}_{k}|\mathbf{e}_{1:t}) &= P(\mathbf{X}_{k}|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t}) \quad (\text{divide evidence}) \\ &= a P(\mathbf{X}_{k}|\mathbf{e}_{1:k}) P(\mathbf{e}_{k+1:t}|\mathbf{X}_{k},\mathbf{e}_{1:k}) \quad (\text{Bayes' rule}) \\ &= a P(\mathbf{X}_{k}|\mathbf{e}_{1:k}) P(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}) \quad (\text{Markov Indep.}) \\ &= a \mathbf{f}_{1:k} \mathbf{b}_{k+1:t} \end{split}$$

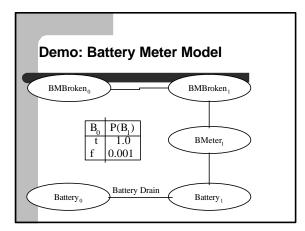


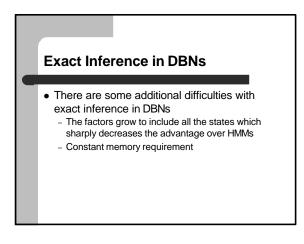
Backwards procedure

- Repeating actions at each step of time
- Formalize as procedure
 - P(e_{k+1:t}|X_k) = BACKWARD(next state set, future evidence set)
- Message passing goes backwards in time
 b_{k+1:t}= BACKWARD(b_{k+2:t},e_{k+1:t})









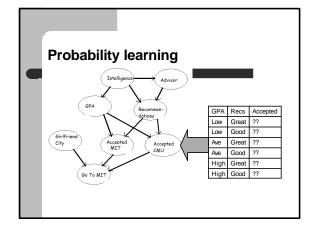
Approximate Inference

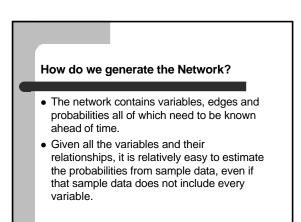
- While a number of inference algorithms exist for the standard Bayes Net, few of them adapt well to the DBN.
- One that does adapt is Particle filtering, due to its ingenuitive use of resampling

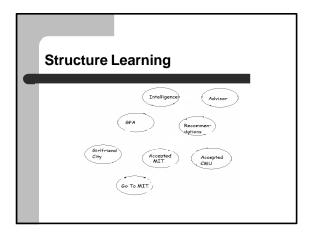
 Particle filtering deals well with hybrid state
- Sampling has trouble with unlikely events

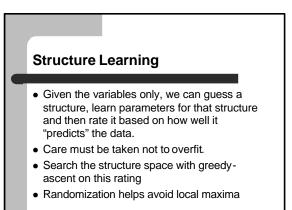
Learning

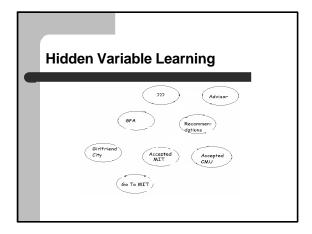
- The three components of a BN - the probabilities
 - the structure
 - the variables
 - can all be learn automatically, though with varying degrees of complexity





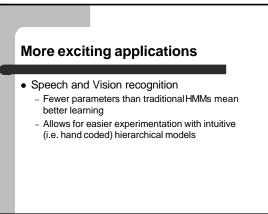






Hidden Variable Learning

- Given a subset of the variables, generate new variables, structure and parameters.
- Greedy ascent on the output of Structure learning.
- Some risk of overfit



In Depth Training

- Since the DBN model doesn't make a distinction between observed variables and hidden variables, it can learn a model with access to data that we don't have during prediction.
- For example, in Speech Recognition, - We know that sounds are made by the pose of
 - the lips mouth and tongue
 - While training we can measure the pose

<section-header>

Recall a few important points

- Bayesian networks are an arbitrarily expressive model for joint probability distributions
- DBNs can be more compact than HMMs and therefore easier to learn and faster to use
- Dynamic Bayesian networks allow for reasoning in a temporal model
 - Tolerant of missing data, likewise able to exploit bonus data
 Computationally, the compactness advantage is often lost in exact reasoning
- Particle Filters are an alternative for exploiting this compactness as long as the important probabilities are large enough to be sampled from.