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Outline 

• Intro to Games 
• 
• 
• 

Trees 
• 

• Summary 

Texas Hold ‘em Demo 
Hidden Markov Models – Structure Learning 
Bayesian Nets – Interpolating Conditional Density 

Project Preview – Level 1 Reasoning in Poker 
using HMMs and Bayesian Nets 

In this lecture, we present two key techniques for reasoning in games.  To motivate 
our talk, we begin with a demonstration from the game of Texas Hold’Em.  We use 
this demonstration to provoke some key questions in reasoning, and follow that up 
with lectures on two key techniques: Bayesian Nets and Hidden Markov Models.  For 
these topics, we will begin with a review some of the fundamentals in each of these 
areas, then move into describing some more recent developments in research for the 
advanced portions of the talk. We then wrap up the information presented, and 
describe how we will use these methods in our final project. 
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Why Games? 

• Economic Models 
• Combat Scenario Models 
• AI Benchmarks 
• Fun 
• $$$ 

I’d like to point out that lessons learned from modeling and learning games and game 
theory have been extended to a number of domains: 

For example, Adam Smith’s classic, “Wealth of Nations”, can be modeled as a zero 
sum game. Also, simulation of warfare typically involves adversary modeling.  
Finally, games have a set of clearly defined rules, providing good AI benchmarks 
with a good way of evaluating algorithms on specific problem domains. 

These are a few of the many domains where principles of games and game theory can 
be applied. 
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• 
• Goal: make best 5 card poker hand out of 7 
• Betting proceeds after every round 
• Round 1: Each player dealt 2 cards face down 
• Round 2: Flop 

– 3 cards face up for all players to use 
• Round 3 and 4: Turn, River 

– Turn and River adds a card each to community cards 
• Showdown 

Texas Hold ‘em Poker 

2-10 players 

To demonstrate the techniques we will cover in this lecture in action, we will now 
have a demonstration of how Texas Hold ‘em.  We will do this by having four 
volunteers from the crowd come and play a hand. Before we ask for volunteers, I’ll 
give you a basic overview of the game. Texas Hold ‘em is typically played with 2-10 
players all sitting around a common table. The goal of the game is to make the best 
poker hand, consisting of 5 cards, from a total of 7 cards. The game starts by each 
player receiving two cards face down. These cards are only for the individual player 
to see. Then, each players bets upon the strength of these cards.  Next, the flop 
comes. In the flop, 3 cards are dealt face up in the middle of the table.  These are the 
start of 5 community cards that all the players can use. Based upon the strength of 
these cards and the two face down cards, the players bet again. This round of betting 
is followed by the “Turn,” which deals another card face up in the middle of the table.  
This is again followed by a round of betting. The final card is dealt face up in what is 
called the “River.” This is followed by a final round of betting.  After the betting 
concludes, each player shows their hand in “the showdown.” The winner is 
determined by who has the best hand using their own two individual cards and the 5 
community cards. 

Now that you know how the game is played, can we get 4 volunteers to play a round 
of Hold ‘em? 

(Demo a round of Hold ‘em.  Talk through the game at each and every point to 
minimize pressure and stress. Try to make new players comfortable.) 

4 



• Hand Strength 
• Hand Potential 
• Odds 
• Bluffing 
• Psychology 
• 

Keys to Hold’em 

Multi-Level Reasoning 

As we saw in the demo, there are a number of factors that go into deciding one’s 
actions in Hold’Em.  At the most basic level, we are reasoning about our own hand 
and it’s potential. As we start to reason beyond these concepts, we realize that the 
odds, bluffing, and psychology are a few of the many factors tha t determine how us 
and our opponents act. I would like to break Hold’Em strategy down into what I call 
a multi-level reasoning problem: 

Level 0: Reasoning about your hand 

Level 1: Reasoning about your opponents hand 

Level 2: Reasoning about what your opponent thinks about his and your hand 

Level 3: What to do about what your opponent thinks 

… 

Professional players are often thinking on level 4 or 5, which would  be incredibly 
difficult for a machine to accomplish without the lower level reasoning. 
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Reasoning Techniques for Games 

Games 

Search 
Statistical 
Inference 

Bayesian 
Nets 

Hidden 
Markov 
Models 

Minimax/ Evolutionary 
Algorithms 

Kalmann 
Filters

… …
Alpha-Beta 

In this lecture we will focus on two techniques for reasoning about games to address 
the Level 1 reasoning problems just introduced. These techniques fall under the 
category of statistical inference. We chose these two techniques because they are very 
powerful for reasoning about situations with hidden information. 

In general, these techniques use statistics in the form of large mined datasets to learn 
the structures and parameters for graphical methods. We describe the representation 
for these methods, along with a number of recent advances in research used to more 
efficiently learn this representation. 
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Outline for HMM Section 

• Background 

• Info extraction using HMM structures 
learned by stochastic optimization 

• Summary 

– HMM intro and formalization 
– HMM example related to Hold’em 
– Problems to solve and general solutions 

Here is an outline of the HMM section of the lecture. First, I will discuss some 
background about HMMs.  I will start off with a graphical explanation of HMMs and 
then proceed into a more formal definition. I will follow up this formalization with an 
example of how a Hold ‘em hand can be represented with HMMs.  Specifically, this 
will be used to show how the model changes as more information becomes available 
and the essence of the problem related to inferring your opponent’s hole cards given 
only his/her observations. Then, this example will be generalized to problems related 
to all HMMs and a mention of how to solve these problems will be mentioned. Then, 
I will go into the advanced portion of the lecture. This section deals with how a 
HMM structure can be learned through stochastic processes to best extract 
information from human readable text. This is important when trying to learn 
information needed to model opponents from previous hand-histories.  I will give a 
more detailed outline when I get to that section of the lecture when I get there. 
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HMM Graphical Representation 

1/3 

CO AOL 

BOL OC 

1 
1/3 

1/3 

1/4 

3/4 

1/3 

2/3 

s1 s2 

s3 

s4 

• Finite num states, N 

• 

• N x N 

• 

• 

• N x M 

• 1] 

a – Transition matrix 

[0?  1] 

b – Observation matrix 

[0 ?  

(Need to go through this slide quickly as there is a lot of material in the lecture.  You 
need to gauge the audience’s prior knowledge on this topic. If they already know this, 
breeze through it to save time. If, however, they don’t, then the time here is well 
spent because if they don’t get this, everything else will be completely over their 
heads.) 

Basic Properties of Markov Systems: 

•Finite number of unique states (s1, s2, …, sN) 

•System in only 1 state at a time 

•Transition from state i to state j: 

•Given through a defined probability 

•Occurs at discrete time steps 

•Independent of previous history 

(depends only on current state)


When Markov Systems are represented as a directed graph 

•States are represented by nodes 

•State transitions are represented by edges 

•Edge labels are P(st+1= sj|st = si) 
•Notice that the transition probabilities sum to 1 8 



HMM Formalization 

? i}, ij}, {bi(j)}> 
• States are labeled S1 S2 … SN 

• 
• 
• pi – P(q0 i) 
• aij 

• bi

= <N, M, {p {a

N – number of states 
M – number of observations 

= S
– transition matrix 

(j) – observation probability matrix 

With that graphical example in mind, let’s now turn to a formalization of HMMs: 

•5-tuple usually denoted by ?.  Variables include: 

•N, which is the number of states 

•M, number of observations (Helps to flip to the previous slide and point out 
that the unique observations in the graphical example are A, B, C, L, and O, 
making M = 5, with N = 4) 

•? , which is the probability of any given state being the initial state.  This is a 
very important point for Hold ‘em.  When you are trying to infer your 
opponent’s cards, you are essentially interested in knowing their initial state, 
which is their hole cards. 

•a, which is the transition matrix and 

•b, which is the observation probability matrix 

The two matrices are shown on the next slide to solidify their meaning. 
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Demo of 
Matrices 

a11 = 0 a12 = 2/3 a13 = 1/3 a14 = 0 
a21 = 1/3 a22 = 1/3 a23 = 0 a24 = 1/3 
a31 = 0 a32 = 1 a33 = 0 a34 = 0 
a41 = 0 a42 = 0 a43 = 3/4 a44 = 1/4 

b1(A) = 0 b1(B) = 0 b1(C) = 5/6 b1(L) = 0 b1(O) = 1/6 
b2(A) = 3/4 b2(B) = 0 b2(C) = 0 b2 2(O) = 1/6 
b3(A) = 0 b3(B) = 1/3 b3(C) = 0 b3(L) = 1/3 b3(O) = 1/3 
b4(A) = 0 b4(B) = 0 b4(C) = 1/2 b4(L) = 0 b4(O) = 1/2 

1/3 

CO AOL 

BOL BO 

1 1/3 

1/3 

1/4 

3/4 

1/3 

2/3 

s1 s2 

s3 

s4

}The state transition probabilities 
P(qt+1 j| qt i ij 

t = k| qt i) = bi(k) 

(L) = 1/12 b

= S = S ) = a

The observation probabilities, P(O = S

(Talk through the population of 
the matrices for one particular 
node in each matrix. For 
example, go through row one in 
a and row 2 in b. Not that the 
assignment of the probabilities 
in b was completely arbitrary. 
In addition make these points) 
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PNA 

. 

. 

. 

Hole Cards Flop 

PNA 

Observations: A 

Pair 
PNA 

Two Pair 
PNA 

Trips+ 
PNA 

Turn 

Pair 
PNA 

Two Pair 
PNA 

Trips+ 
PNA 

River 

Pair 
PNA 

Two Pair 
PNA 

Trips+ 
PNA 

Info about the world: 

P A N 

Example HMM for Hold’em 

(This is probably one of the “cooler” slides in the presentation.  When done probably, 
it will definitely catch people’s attention. However, it is very easy to spend a great 
deal of time on this slide. If the demo took longer than you thought it would, if you 
started late, etc, give a compressed version of this slide, especially if you analyzed the 
play of the participants in the demo). 

(Before first click) 

Now, we are going to transition into how we can represent a hand of Texas Hold ‘em 
using HMMs and give an explicit example of the type of problem that we’re 
attempting to solve. As we’ve seen, Hold ‘em starts off with each player being dealt 
two cards, face down. 

(Click – Cards dealt) 

In this particular hand, we were dealt two kings, known in poker terminology as 
pocket kings. This is a great start! As mentioned during the formalization, the hole 
cards are used to define the initial state of the HMM. 

(Click – States surrounding cards appear, along with “Hole Cards” text and the three 
dots) 

As you can see, come bucketing can be done to limit the search space of the problem.  
The state can be defined in terms of important poker hands instead of each particular 
combination of cards. For example, we don’t care if we have the K of clubs and K of 
diamonds or the K of hearts and the K of spades, all we care about is that we have 
pocket kings. Similarly, the observations can be grouped into three major categories:  
passive, normal, and aggressive. 
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What’s Hidden?? 

Nothing if these are your cards, but could be: 
• Path of states 
• Info about underlying system 

– Probability of transition between states 
– Probability of an output for a given state 
– Available outputs for a state 
– Actual state representation itself 

The example just presented gives an idea of what information is hidden in the case of 
Hold ‘em.  The state transition probabilities are known ahead of time and the known 
information produced from the games include the observations, the community cards, 
and your two hole cards. However, you don’t know your opponent’s initial state, nor 
do you know the path which the opponent’s hand took during the game.  We can no 
generalize this to all HMM models. Poker represent a class of problems where you 
know information about the underlying system, but you don’t know about the specific 
path traveled. However, another class of problems appear when you are missing 
information about the underlying system. For instance, could now what the all the 
possible states are, but not know the probability of transitioning between them.  Or 
perhaps you don’t know what the probability of any given output is for a particular 
state. This is critical in Hold ‘em.  In the previous example, the player used the 
advanced technique of slow-playing the hand.  However, maybe a more novice player 
would have just bet aggressively. One of the keys to figuring out what your opponent 
has based upon their observations is to know how they bet given a particular hand.  
Said differently, one of the keys is to figure out the probability of some output for a 
given state. Another piece of information that could be missing about a particular 
state is the outputs that are even available in a state. This isn’t a problem for Hold 
‘em, but thinking back to our string output example, this would be the case if we 
didn’t know that state 1 had a possible output of ‘C’ or ‘O.’ Finally, you could be 
missing the state representation entirely. You could literally know nothing about 
which states are present, the probability of transitioning between the various states, or 
the outputs that are available in any particular state. This is the type of problem we 
will be addressing in the advanced portion of the lecture. We’ll talk extensively about 
this in a couple slides, but the essence is that we are trying to generate the underlying 
system that best allows us to extract information from human readable text. 12 



3 Big Questions 
• Know underlying system, want to know 

• Know underlying system, observations, 
want to know most probable path (MPP) 
that lead to observations 

• Know observations, want to determine 
underlying system 

prob of a particular output sequence 
– Forward algorithm 

– Viterbi algorithm 

– Baum-Welch algorithm 

These types of problems can then be lumped into three basic categories.  In the first, 
we know the underlying system, but we want to know the probability of a particular 
output sequence. This basic type of problem can be solved with the forward 
algorithm. The next major category occurs when we know the underlying system and 
are given a set of observation. With this information, we want to know what the most 
probable path of states was that generated the observation seque nce.  This class of 
problems is solved using the Viterbi algorithm.  Finally, as previously mentioned, we 
could have only the observation sequence and from that, we want to determine the 
underlying system. In this case, once the structure is learned the Baum-Welch 
algorithm can be used to assign the probabilities of the state transitions and the output.  
We will see this come up again when we discuss the advanced technique.  The Baum-
Welch algorithm and the Viterbi algorithm were discussed in the prerequisite course 
16.410. As a result, these algorithms will not be discussed in this lecture.  However, if 
you would like to know more about them, Dr. Williams has slides on them to which 
you can refer. 
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Paper Specifications 

• Information Extraction with HMM 
Structures Learned by Stochastic 

Andrew McCallum (2000) 
Optimization by Dayne Freitag and 

It’s now time to turn to the advanced portion of the lecture. The material for this 
section of the lecture is taken from the paper cited here. 
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Outline for Advanced HMM 

• Problem statement and background info 
• 
• Extension of HMM to include target, 

surrounding context 
• Show how structure is learned, evaluated 
• Experiments and results 

Traditional uses for HMMs in IE 

Here’s the outline of the advanced section of the talk that I promised you earlier.  

First, we’ll start off by defining what the problem is and go over the background 
information required to understand and motivate it. We will see that we want to use 
HMMs to perform information extraction from human readable text.  Specifically, we 
want to be able to learn the best structure of an HMM to use in order to accomplish 
this task. 

In order to motivate this, after the background, we will take a look at how HMMs are 
currently used in IE problems. 
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Problem Statement 

• Learn structure and parameters of HMM to best 

• Extract Text from Poker Hand Histories in 
Database: 

player111 checks. 
holdem23 checks. 
** Dealing Turn ** [ Qc ] 
player111 checks. 
holdem23 bets [$6]. 

extract info from human-readable text 

** Dealing Flop ** [ 4s, Jc, 8h ] 

(Read bullet)


Bullet implies two parts: 1) Learning an HMM structure and parameters and 

2) extract info from human-readable text


Learning HMM structure is the crux of the algorithm that is presented in the 

paper


Learning the parameters is accomplished by Baum-Welch.


Extract info from human-readable text:


Example:


Given an announcement of a seminar on a college campus, extract out the 

person giving the lecture and the location at which it is held.


In this case, you have a human-readable announcement, perhaps in email form, 

but you want to be able to automate the process of extracting the relevant 

information from the announcement. To better define this task, let’s first 

define some background definitions related to the task and also establish the 

underlying assumption made by the authors.


Tying this back into poker, this example demonstrates how we could generate 

the Hidden Markov Model for extracting relevant information from a database 

of Poker Hand Histories for our final project.
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Background Definitions & 
Assumption 

• Information Extraction 
• Sparse Extraction 
• Fields 
• Template Assumption 

Definitions 

•Information Extraction – The process of filling fields in databases by 
automatically extracting fragments of human-readable text. 

•Sparse Extraction – The object is to extract relevant phrases from documents 
containing much irrelevant text 

•Fields – Relevant fragments in the text 

Underlying assumption 

•Template Assumption – Assume that for every document in a corpus, there is 
a corresponding relational record (template), each slot of which is either empty 
or is filled with a fragment of text from the document. This me ans that you are 
not just given an email and told to extract the important text. Instead, you are 
given an email, told that it is a lecture announcement, and that you want to 
extract the name of the speaker and the location of the seminar. 
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• Determine most probable sequence of states 
to have generated whole document 

• Extract symbols associated with designated 
“target” states 

• 

HMMs in Information Extraction 

Viterbi algorithm 

Now that we have a sense of the problem, let’s see how HMMs are 
traditionally used in IE. 

Two main tasks for HMM in IE 

•Determine MPP 

•Extract symbols from target states 

Can be done in a computationally efficient manner using Viterbi algorithm 
mentioned in background section 

Usually don’t have anything about learning the structure. Usually the structure 
is already defined, typically done through expert analysis. 

Once we have the HMM, we can use Viterbi to get the MPP.  Thus, this then 
begs the question, how do we get the HMM? As we’ve said before, the task of 
determining the HMM can be divided into two parts, learning the structure and 
training the parameters. 

Towards the goal of learning the structure, the existence of “target” states is 
new. Before, all the states were of equal importance and history independent.  
Now, however, there are only certain states that produce output of interest to 
us and these states are fit into the context of the surrounding document instead 
of being considered in isolation. Let’s take a look at an examp le (Next slide) 
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Example HMM Structure 

• Learner models both the field and its 
context on either slide 

The context is established through the simultaneous modeling of target states 
with the output directly neighboring these fields. 

In the graph, the target states are distinguished between non-target states 
through the use of different shapes. 

•Targets are shown as hexagons 

•Non-targets are shown as circles 

Non-target states can be broken down further into prefix, suffix, and 
background 

Terminology and definitions: 

•Target – States required to model the content of target phrases (analogo us to 
fields in a database) 

•Prefix – A set of one or more states connected together as a string.  A prefix 
state transitions only to the next state in the string or, if it is the last state in the 
string, to one or more of the target states. Models are designed such that if a 
state sequence passes through a target state, it must first pass through a prefix. 

•Suffix – Similar to prefix.  Any state sequence must pass through a suffix 
upon leaving the set of target states. 

•Background – States that model any text not modeled by other kinds of states.  
A background state has only transitions to itself and to the beginning of all 
prefixes. Incoming transitions come only from itself or the ends of all 
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Model Properties 

• Each HMM extracts just one field 
• Does not require preprocessing 
• Contain two kinds of states: 

• Not fully connected 

Target and Non-Target 
– Targets used to extract tokens of interest 

The generic model type shown in the previous slides have the following 
properties: 

•Each HMM extracts only one type of field, such as “seminar speaker”.  When 
multiple fields are to be extracted from the same document, such as “seminar 
speaker” and “seminar location,” a separate HMM is constructed for each 
field. 

•The HMM models the entire document. As a result, no pre-processing is 
required to segment the document into sentences or other pieces. The entire 
enter text of each training document is used to train transition and emission 
probabilities. 

•(No additional talking points needed for third bullet) 

•Restricted transition structures captures context that helps imp rove extraction 
accuracy. Forces the structure to go from background, to prefix, to target, to 
suffix, and back to background. 
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Additional Variables in HMM 

• L(s) 

• {l1, l2, …, lm} 

a target 

– Binary value indicating whether s is a target 

– Binary value indication whether observation is 

– Used to train model 

These models follow the same basic form of an HMM. 

•Can only be in one state at a time 

•There is an observation associated with an given state 

•Transitions defined by probability 

•Finite number of states 

•Transition between states at discrete intervals 

However, additional information now is needed to successfully encode the 
existence of target states 

•First additional variable is L(s): Binary value for each state simply telling 
you whether or not that state is a target 

•Analogously, {l1, l2, …, lm} are binary values saying whether an observation 
is a target or not 

This additional information is used to train the model, which is discussed a 
little later. 
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How is Structure Learned? 

• Start w/ simple model 
• 
• Apply each of a set of operators 
• Best resulting model in each iteration is 

saved 
• Highest scorers tested against each other 

and final model is chosen 

Hill-climbing in space of possible structure 

This is the essence of the algorithm presented in the paper. 


It starts with the simple model that has just a single background, prefix, target, 

and suffix state. 


From here, it performs a hill climbing method to search in the space of 

possible structures.


At each iteration of the hill climbing procedure, a set of operators is performed 

on the model to alter its current structure.


All the resulting structures in a giving iteration are scored and the best 

performer is picked. 


Finally, all the high scorers are compared and the final model is chosen as the 

highest rated model


A logical question given this high-level presentation of the algorithm is then 

what are the operators that are performed on the structure (next slide).
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Operators 

• Lengthen a prefix 
• Split a prefix 
• Lengthen a suffix 
• Split a suffix 
• Lengthen a target string 
• Split a target string 
• Add a background state 

Mentioned in the previous slide that you have a set of operators to perform on 
the model at each iteration of the hill-climbing method.  This slide gives an 
exhaustive list of the operators. 

Operators: 

•Lengthen a prefix: A single state is added to the end of a prefix.  The 
penultimate state now transitions only to the new state. The new state 
transitions to any target states to which the penultimate state previously 
transitioned. 

•Split a prefix: A duplicate is made of some prefix. Transitions are duplicated 
so that the first and last states of the new prefix have the same connectivity to 
the rest of the network as the old prefix. 

•Lengthen a suffix: Identical to the prefix-lengthing operation 

•Split a suffix: Identical to the prefix-splitting operation 

•Lengthen a target string: Similar to the prefix-lengthening operation, except 
that all target states, in contrast with prefix and suffix states, have self-
transitions. 

•Split a target string: Identical to prefix-splitting 

•Add a background state: Add a new background state to the model with the 
same connectivity to non-background states as all other background states. 

Examples: 

•Top graphic on the slide demonstrates the lengthening of a prefix operator 
23 



Algorithm to Learn Structure 

Background: 

•ValidSet:  All of the labeled documents set aside for the validation of the 
model 

•TrainSet:  All of the labeled documents set aside for the training of the model 

•CurModel:  Used to store the model on which the operations are performed 

•Candidates: All the candidate models in a given iteration to be scored.  
Populated by applying the operations to the current model. 

•Keepers: Used to store the highest scoring models for each iteration of the 
hill-climbing 

Start with a set of labeled documents 

Set aside 1/3 of them for the validation stage of the model 

The other 2/3 are then used to “train” the model. In this algorithm, however, 
the training of the model is really developing the underlying HMM structure 
used to extract the information. 

Initialize the algorithm by setting the current model to the simple model, 
Keepers to have just the simple model, and the iteration number to be 0 

Candidates variable is populated by performing every possible operation to the 
current model. 24 



Performance Metric 

• Must identify target or decline to perform 
extract 

• Precision 
• Recall 
• F1 
• Multiple predictions 

Further talking point on first bullet is that only one correct answer exists. 

Precision – Number of correct extractions divided by the number of documents 
for which the learner issued any prediction 

Recall – Number of correction extractions divided by the number of 
documents containing one or more target functions 

F1 – Harmonic mean of precision and recall 

Multiple predictions – If the learner issues multiple predictions for a 
document, only the one with the highest confidence is considered. 
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What is Meant By Training Model? 

• Transmission & emission probabilities 
• 

Welch algorithm 
Estimated with labeled data and Baum-

Q: What is meant by training the model? Or similarly, what is being training? 

A: Transmission & emission probabilities 

The first step in doing this is that the data need to be labeled.  Labeled training 
data consists of a sequences of words with the target words already identified. 

•Sometimes this yields a unique path 

•Much more often, however, Baum-Welch needed to iteratively estimate the 
parameters and fill in the missing path. 

This fits into the larger context of structure and parameter learning that Mike 
will cover in more detail with regards to Bayesian nets later in the lecture. 
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Data Sets 

• SA: Speaker Announcement 

• Corporate Acquisition Article 

• Jobs: 

• CFP: Call for Papers 

– speaker, loc 
Acq:  
– acquired, dlramt 

Usenet Job Annoucement 
– company, title 

– conf, deadline 

Experiments run: 

•SA: A collection of 485 seminar announcements posted electronically at 
CMU. Fields include speaker, the name of the speaker at the seminar, and 
location, the location (e.g., room number) of the seminar. 

•Acq:  A collection of 600 Reuters articles detailing corporate acquisitions.  
Fields include acquired, the name of the company to be purchased, and dlramt, 
the purchase or estimated purchase price. 

•Jobs: A collection of 298 Usenet job announcements. Fields include 
company, the name of the company seeking to hire, and title, the job title. 

•CFP: A collection of 363 Internet “Call for Paper” announcements in ASCII 
format. Fields include conf, the name of the conference, and deadline, the 
full-paper submission deadline. 

Additional Background info: 

•The document collection is partitioned several times into a training set and a 
testing set. The learner is trained using the training set and its performance is 
measured using the testing set. 

•Training sets used to both select a model structure and to set its parameter. 

•Training and testing sets are roughly equal size, except for jobs, which were 
90% training and 10% testing. The was done for comparison purposes with a 
previously published paper. 

27 



Example Resulting Structure 

As stated before, prefix and suffix nodes are circular/ovular while the targets 

are hexagonal.


Transition between the states are labeled with the associated probability.


Only probabilities >= 0.01 are shown


Top graph represents the location field of the seminar announcement problem.


•Prefixes 

•Figure suggests a single, relatively short prefix context is needed. 

•Only a single prefix is retained 

•Suggests unambiguous and length invariant types of language leading 

up to the location


•Phrases include: 

•“Place:” 

•“Where:” 

•“in the” 

•“00 PM” 

•This also shows that the location is usually preceded by 
time 

•Targets 

•Partitioned into three parallel paths, top and bottom have a length of 2 

and middle has a length of 4
 28 



HMM Summary 

• IE, sparse extraction problem 
• Learn an HMM structure to perform IE 
• 
• Hill climbing method to learn structure 
• 
• Experiments and Results 

Context-based alterations to traditional HMM 

Baum-Welch to learn parameters 

We first established that the problem was an information extraction problem 
from sparse, human-readable text to extract target information. 

Specifically, the authors sought to learn an HMM structure that performed this 
type of IE with maximum accuracy. 

With this application in mind, we then established how HMMs are usually 
used in IE. 

From there, we said that the two parts of creating an HMM are to first create 
the structure and then learn the parameters. We then defined a new variant to 
the traditional HMM structure that denoted target states and used the context 
of the words surrounding these targets to aid in the extraction accuracy.  We 
then discussed the addition to the traditional HMM that resulted from this 
alteration. 

We then introduced the big picture of the algorithm used to create the new 
HMM structure and stepped through each line. 

We quickly established that Baum-Welch was used to obtain the parameters 
and then finished by discussing the experiments run on the algorithm and there 
associated results. 
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Bayesian Nets 

X4 

X5 

X1 

X3X2 

I now introduce Bayesian Networks as a powerful technique used to model and 
visualize the complex causal relationships between variables within the domain of 
interest. These graphical structures, also known as belief networks, allow us to make 
educated guesses about the value or distribution of these variables, given evidence in 
the form of observations. This area is a relatively recent development in research, and 
is still a very hot topic today. After presenting the fundamentals of Bayesian Net 
Inference, I will present an advanced technique that has been pioneered in recent 
years, which involves the generation of the conditional probability informatio from 
statistical data. 

But first, let me move into a quick review of Baye’s rule… 
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evidence 
priorlikelihoodposterior 
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· = 

= )()|()|( 

Bayes Rule 

B P 
B A P 

) ( 

Recall from intro Probability class the definition of Bayes rule, which gives us a way 
to quantify the conditional probability of occurrence of a particular event A, given we 
have observed some new evidence B. A good way to look at this Rule is the second 
form here, where the posterior probability is computed by the product of the prior 
probability and the likelihood, divided by the unconditioned probability that we see a 
particular observation. The basic idea is that we would like to update our beliefs 
about the world given some evidence. 
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• Event A: Snow in Boston 
• Event B: Season is Winter 
• We want P(A|B) 

– Prior: P(A) ~ .05 
– Evidence: P(B) ~ .25 
– Likelihood: P(B|A) ~ .5 
Therefore, P(A|B) = (.5*.05)/.25 

=.1 

Bayes Rule: An Example 

Just a quick example of Bayes rule in action: suppose we have two events, Event A 
corresponds to an event that on a given day it snows in Boston. Event B corresponds 
to Season being Winter. 

We know the a priori probabilities for each of these, based on statistics, so we can 
then move toward a conditional understanding one given the other. 

But what happens when we are given additional information? 
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What about related events? 

• Want: Safe Road Trip 
• Safe Road Conditions? 
• Raining? 
• Snowing? 

Now suppose you’d like to plan a road trip, but you’re a little concerned the road 
conditions will be too dangerous. How can we reason about the decision to proceed, 
based upon related information? Snow, Rain, Time of year, road conditions, etc. all 
factor into our decision, but the relationship between these variables is not 
immediately clear. 
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Representation of Information 

Discrete or Continuous Variables 
X1: Season {Winter, Spring, 

Summer, Fall} 
X2: Snowing {t, f} 
X3: Raining {t, f} 
X4: Good Road Conditions {t, f} 
X5: Safe Trip {t, f} 

Connections Between Variables 
Conditional Probability Tables 

P(X2 = t | X1 = Winter) … 
Conditional Independence 

X4 

X5 

X1 

X3X2 

....8X2 = 
false 

….2X2 = 
true 

Given 
X1 = 
spring 

Given 
X1 = 
winter 

CPT 

How is information represented in a Bayesian Net? 

1) All variables are graphically represented as nodes in this gragh 

2) The relationships between these nodes is represented as connections between these 
variables. When a parent points to a child, it indicates a direct relationship. 

3) Finally, the conditionally probabilities are represented by conditional probability 
tables, for the case of discrete variables, or conditional density trees as I will 
describe in a few slides. 

By modeling parent/child relationships as singular edges, we have simplified the 
problem to reasoning about pairwise relationships 
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Generating a Bayesian Net 

Steps: 
• Declare variables of 

interest 
• Connect variables in 

acyclic graph 
structure 

• Approximate 
Conditional 
Probabilities 

Variables: 
X1: Villain is a passive player 
X2: 

X3 

X4

X5: Opponent has a full house 

X5 

X1 

X3 

X2 

X4 

: % of Hands Played by Villain 
: Villain is a ‘rock’ 
: Villain check-raises turn 

Now that we know the nature of the type of information represented in a Bayesian net, 
I would like to describe how we go about learning the structure and parameters for 
this graphical method. 

Suppose you are given a database of previously played poker hands, and you’d to like 
to learn an appropriate Bayesian net for reasoning about hidden state in any given 
hand, so that we may make better decisions. Let’s go through this exercise step by 
step… 

Step one is to declare the variables of interest. Notice here that we have both 
continuous and discrete variables. 
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Generating a Bayesian Net 

X5 

X1 

X3 
X2 

X4 

Naïve: 

X5 

X1 

X3 
X2 

X4 

Learned: 

Expert: 

X5 

X1 

X3 
X2 

X4 

Steps: 
1. Declare variables of 

interest 
2. Connect variables in 

acyclic graph 
structure 

3. Approximate 
conditional 
probabilities 

Step two in the process is to connect all variables of interest in an acyclic graph.  This 
process is called structure generation. A number of techniques have been 
published on how to generate these structure. For a reference to some of these 
advanced techniques, see Andrew Moore and Scott Davies work at CMU. 

For the sake of time, I will only describe the three general classes of structure learning 
methods. 

1)	 Naïve – structure learning using a Naïve approach yields a structure where all 
variables influence the variable of interest directly. 

2)	 Learned - This is an advanced technique in research.  By using search algorithms 
and an evaluation of yielded structures, we can potentially learn accurate 
structures for these Bayesian nets 

3) Expert – Humans that have knowledge of the domain of interest can also generate 
these structures. However, relying on this approach can yield a number of 
problems. For example, some domains do not have human experts, while other 
domains have so many variables of interest, that the complexity exceeds the 
abilities of the domain experts. 
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Generating a Bayesian Net 

Steps: 
1. Declare variables of 

interest 
2. Connect variables in 

acyclic graph structure 
3. Approximate 

conditional 
probabilities 

Problem: 
Mixed Continuous and 
Discrete 

Solution: 
Conditional Density 
Trees: Next! 

Once we have information about the structure of ourStep three in the generation of a 
Bayesian net is the estimation of conditional probability distributions for each node, 
given information about the parents of each of those nodes. Although I have chosen 
not to focus on advanced techniques for structure learning, I will be describing a 
number of recent developments in interpolating these conditional density trees. 

37 



Interpolating Conditional Density Trees 

• Mix Continuous and Discrete variables 
• Decision Trees for Conditional Distribution 

– 
• 

Joint Density Trees [2] 

Tree-growing algorithms 
Advanced Technique: Approximately Conditionalized 

So for every node in our Bayesian net, we need to learn an accurate representation for 
the distribution of that variable, given information about all parents.  This can be done 
using joint distributions or conditional distributions. The difficulty of this problem 
increases when you introduce continuous variables. To address this issue, I will 
describe a number of tree-based density estimators and a tree-growing algorithm. 

The goal is to have a fast and accurate way to generate these structures given our 
training data, so I will also demonstrate one advanced technique that was published in 
2002 out of CMU for doing so. 
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Decision/Classification Trees 

A fundamental way to represent conditional distributions over continuous and discrete 
variables is through the use of decision, or classification trees.  Our goal is to come up 
with a concise way to represent the conditional distribution of the variable of interest, 
given one or more parent variables. 

By branching on every all parent variables, we are able to generate the appropriate 
restrictions with which our probabilities will become conditioned.  Note that at each 
leaf in the tree, the conditional distribution is represented mathematically or through a 
lookup table. 
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Stratified Conditional Density Trees 

• Tests on all Parents 
First, 

• Tests on Variable of 
Interest Last, 

• | ) 
• Accurate, but 

Computationally 
Expensive to Learn! 

Z > .5 

X > .5 X > .5 

X > .75 X > .25 

.50 

.20 

.30 .40 .00 

.60 

Y 

Y 

Y 

Y 

Y 

N 

N 

N 

N 

N 

Subtrees, P(  

Subtree 0 Subtree 1 

The key to represented conditional probabilities is to branch on all parent variables 
first, then create subtrees which represent all information about the variable of interest 
given those parent conditions. This is known as stratification. 

These stratified trees are very accurate for representing the conditional distributions of 
variables, but they are computationally expensive to generate. 
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Joint Density Trees 

• Joint Distributions at Leaves 
• : all variables 
• : all continuous variables 
• : all discrete variables 
• l : single leaf 
• Leaf estimation techniques: Constant, 

i S 
r 

iC 
r 

iD 
r 

Gaussian, Exponential, Linear, Multilinear 

One compromise is to generate Joint Density Trees instead of Conditional Density 
Trees. Given these structures, we can extract the same information about conditional 
probabilities using Bayes Rule. 

It turns out that approximating conditional densities is through the use of Bayes Rule 
and Joint Density Trees is more accurate than computing the conditional density 
information from CDTs directly! In additon, these trees are much less computationally 
intensive to generate than the Stratified CDTs I just spoke about. 

There are a few key differences between CDTs and JDTs, as highlighted by the 
following notation: 

The important thing to take away is that once we have branched on all the parents, the 
leaves are estimated using one of the following technques: constant, gaussian, 
exponential, linear, multilinear.  These mathematic representations are easier to 
generate for joint densities than for single densities. 
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IF data is leaf 
return “Leaf distribution”; 

ELSE 
choose branching variable and threshold 
for each child 

Tree-Growing Algorithms 

function TreeGrow (data) 

set childpointer =  TreeGrow(data) 

Regardless of whether we are generating conditional distribution trees or joint 
distribution trees, the methods described in this paper have focused on a top-down 
approach to generating these decision tree structures. Here is an outline of the general 
recursive algorithm for creating the structures: 

The basic idea is that if you can recognize a leaf, you can use one of the previously 
mentioned estimators to come up with a distribution for it. The techniques for doing 
so could be the focus for their own lecture and are thus beyond the scope of this 
discussion. When a leaf is not detected, one must decide how to branch.  Coming up 
with the thresholds on how to split a continuous variable have been investigated in a 
number of papers. For discrete variables, we just branch on every possible value of 
that variable then recursively call the function on each branch. 
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Conditional Density Trees from 
Joint Density Trees 

•More Accurate than Computing CDT Directly! 

•Denominator Computation is Expensive 

This equation gives us a way of obtaining conditional probabilities from joint 
distributions. Just to reiterate, the challenge is to grow the tree-structure quickly, then 
extract conditional probabilities from that structure. Although JDTs are easier to 
generate, computing the denominator for this expression is expensive because we 
must search for the leaves of interest, then sum over all of their products. 

43 



JDT Speedup: Auxiliary Tree 

• FRACTURE and 
COLLAPSE 
procedures 

To speed up this evaluation, we generate an auxiliary CDT, but do not perform 
estimation on the leaves. Instead, we generate pointers to appropriate estimators on 
the JDTs.  The procedure for generating these substructure CDTs are described in the 
full version of this paper, Scott Davies PhD disseration, under FRACTURE and 
COLLAPSE procedures. 
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Approximately Conditionalized 
Joint Density Trees 

• Generate auxiliary tree to speed up x2 by 
approximating 

• Approximate Conditional Probability 

• Constant 

As I mentioned earlier, generating conditional probability distributions from a joint 
distribution tree is very expensive. In addition to generating smaller auxiliary trees, 
an additional speedup is introduced in the paper I have investigated.  This speedup is 
based upon the approximation, P hat, that the probability of occurrence of a particular 
set of parent assignments can be estimated using the average over a few similar 
leaves. Once this approximation is made, we can describe it as a constant alpha sub c 
and use it throughout the remainder of the caculations. 
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Bayesian Nets: Future Directions 

• More Conditional Density Estimation 
• Structure Learning 
• Learn from Large Datasets Quickly 

The techniques I have just described represent a significant movement in Bayesian 
Nets toward increased accuracy and computational speedup of learning the 
conditional probabilities given a known structure. As I alluded to previously, there is 
a significant amount of research being dedicated to the automatic generation and 
evaluation of the structure of these graphs. Finally, a theme throughout these and 
many other statistical inference tools is always learning your models quickly based 
upon very large data sets. 
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Bayesian Nets Summary 

• Graphical Method: Conditional Probabilities 
• Learning Bayesian Net Structure and Parameters 

from Statistics: 
– Step 1: Declare variables as nodes 
– Step 2: Connect nodes in acyclic structure 
– Step 3: Determine Conditional Probabilities 

• Conditional Decision Trees 
• CDTs from Joint Decision Trees 

I would like you to take home the following points about Bayesian Nets; 

1)	 They are graphical methods, similar to HMMs introduced by Brian, for 
representing probabilistic information. These techniques aid in making inferences 
based upon evidence in a world with unknown information. 

2)	 These tools can be learned in a given problem domain given statistical samples in 
the form of mined data sets. I have gone through a number of advanced 
techniques for generating these, and broken up the process into three phases: 

i)	 Declaring the right variables of interest 

ii) Using a Naïve, Expert, or Learned method, find a way to connect up the 
relationships between the variables of interest 

iii) Finally, use statistics to infer the conditional probabilities for a given 
structure. Advanced Technique: Decision Trees! 
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BN + HMM = 
Multivariable Inference 

• Bayesian Net Variables = State 

X5 
X1 

X3 X2 
X4 

X5 
X1 

X3 X2 
X4 

X5 
X1 

X3 X2 
X4 

… 

Recall that for Hidden Markov Models, we typically have a single variable, State, 
representing each state in the model. However, in any given sta te in poker, we have a 
number of variables which influence the observations we see. We would like a way to 
represent this multivariable state information as a composite single state variable, and 
this representation comes in the form of Bayesian Nets embedded in the Hidden 
Markov Model. 

These embedded nets provide us with a way to represent a number of quantities at any 
given time, some of which we may only have a probabilistic estimate of.  By having a 
Bayesian Net represent the state, we generate a more dynamic model of the system 
upon which we are attempting to make inferences. 
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Level 0 Reasoning: 
Hand Strength 

• Hand Rank by Enumeration 
• Probabilities of Improvement 
• No Hidden Information 

Now that we have described the advanced topics for reasoning about hidden 
information, we would like to provoke some of the questions that will be driving our 
final project. 

As I described earlier in the Multi-Level Reasoning Model, Level 0 Reasoning in 
holdem is a simple lookup task.  Source code can be downloaded from the web for 
this level of reasoning. The real inference problems come when you begin looking 
at… 
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• Opponent’s cards are not known 
– Hidden information 

• Have known information 
– Your cards, community cards 
– 

• Previous hand history 
• Skill level 
• Type of player 

• Have observations 
– Betting that has occurred in current hand 
– Could be noisy (bluffing) 

Level 1 Reasoning: 
Opponent’s Hand 

Opponent-specific information 

Level 1 Reasoning. How can we infer information about an adversary’s hand, based 
upon evidence from his/her betting patterns? 

We’ve already described the nature of the problem in terms of what we know, and 
what we can observe. 
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• Infer initial state 
• Form hypotheses about information 
• Test each hypothesis as more info becomes 

available 
• If inconsistent, modify model 

Level 1 Reasoning: 
Opponent’s Hand 

The way humans attempt this level of reasoning is often done through hypothesis 
testing, and that is precisely what we would like to obtain using HMMs.  We start with 
a basic estimate of the range of hands our opponent may have. As more information 
and observations become available, we update our model of the distribution of initial 
states. Using HMMs, we model the transitions between various hand states.  Using 
Bayesian Nets, we will make inferences about every piece of information we know 
about the hand and our opponents. Combining these techniques will be the thrust of 
our final project. 
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Project Goals 

• Learned Hidden Markov Model from Poker 
Database 

• Learned Bayesian Net from Poker Database 
• 

Reasoning 
Human-Competitive Level 0 and 1 

The existing research in poker is concerned with developing a bot that can be 
competitive with and ultimately beat human players. However, we feel that in order 
for this goal to be accomplished, the bot must first must have the foundation of level 0 
and level 1 reason. That is, before it can be successful able deciding how to play, it 
must first be able to know what it has and infer what it’s opponent has.  

Towards this end, we are going to use HMM to extract information about hand 
histories from various on-line databases.  Then, we will use this information to learn a 
Bayesian net, which will model a given opponent. The Bayesian net then is used to 
train the probability of output for the states in the HMM representing the available 
poker hands shown in the Hold ‘em demo earlier in the presentation. 

In review, we have a HMM to model the Hold ‘em hand.  The initial states are 
unknown and are formed by the hole cards. The transition from any pair of cards to 
any subsequent hand is predefined ahead of time, so we don’t need to know the 
transition probabilities. However, we do need to know the probability of an 
observation for a given state. This gap will be filled in by the Bayesian nets.  The 
Bayesian nets get their information from the online poker databases.  To extract this 
information, we use an HMM in the manner described in the advanced lecture. 
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Summary 

• 
• Reasoning Methods for games 
• HMM Inference and Learning 
• Bayesian Nets Inference and Learning 
• Project Goals 

Texas Hold’em Demo 
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Questions? 
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