
Spatial Intent Recognition using

Optimal Margin Classifiers

16.412J Cognitive Robotics

Final Project Report

Thomas Coffee

Shannon Dong

Shen Qu

5/11/05

Abstract
Human-robot collaboration will be crucial to the productivity and success of future space

missions. A simple yet intuitive means of communication between two parties—such as

communication through gestures—is critical to the success of such collaboration.

Optimal margin classifiers can be used for the classification and recognition of such

gestures. Two pattern input methods are used to test the behavior and performance of

these classifiers. The first is a 2-dimensional computer mouse interface which allows for

ease of control and visualization of the patterns. Patterns obtained through this input

include circles, lines, and written numerals 2, 3, and 4. The second is a 6 degree-of-

freedom hardware tracking device comparable to systems that may be integrated into

actual spacesuits. Patterns for this input include gestures designed to convey the

intentions of “come here,” “lift,” and “move.” These gestures are meant to mirror the

ones actual astronauts may make to communicate with their robotic assistants. We

demonstrate a basic linear optimal margin classifier based on support vector methods to

efficiently learn and recognize input patterns from multiple categories. We test the

algorithm’s capability not only to distinguish different patterns but also to differentiate

same pattern made by different users. We further characterize the performance of this

algorithm and its sensitivity to training corpus size and input sampling resolution. Finally,

we discuss directions for further development of these algorithms to support flexible,

intuitive astronaut collaboration with automated space systems.

2

Table of Contents
ABSTRACT .. 2

TABLE OF CONTENTS ... 3

INTRODUCTION .. 4

1. OPTIMAL MARGIN CLASSIFIER
1
... 5

1.1 REPRESENTATION ... 5

1.2 DECISION FUNCTION... 5

1.3 MAXIMIZING THE MARGIN ... 7

1.3.1 A Note on Dimensionality .. 8

1.3.2 A Note on the Decision Function Bias ... 9

2. IMPLEMENTATION METHODS... 11

2.1 USER INPUT MECHANISMS.. 11

2.1.1 Handwriting Input.. 11

2.1.2 Gesture Input ... 12

2.2 INPUT PATTERNS OF INTEREST ... 14

2.2.1 Circles and lines .. 14

2.2.2 Numerals .. 15

2.2.3 Gestures ... 16

3. RESULTS AND ANALYSIS ... 17

3.1 BASIC SHAPES: A FIRST LOOK.. 17

3.2 HANDWRITING RECOGNITION: PERFORMANCE DRIVERS .. 21

3.3 GESTURE RECOGNITION: PUTTING IT ALL TOGETHER .. 30

4. POSSIBLE EXTENSIONS .. 37

4.1 PATTERN RECOGNITION GIVEN CONTINUOUS INPUT .. 37

4.2 DISTINGUISH PATTERN FROM NON-PATTERN ... 38

4.3 ALTERNATIVE CLASSIFICATION FOR MULTIPLE CLASSES... 39

4.3.1 Single classifier for Multiple Classes... 40

4.3.2 Binary Tree-Structured Classifiers .. 41

CONCLUSION ... 43

ACKNOWLEDGEMENTS ... 44

REFERENCES ... 45

3

Introduction
The high costs of human spaceflight operations favor large investments to optimize

astronauts’ time usage during extravehicular activity. These have included extensive

expenditures in training, tool development, and spacecraft design for serviceability.

However, astronauts’ spacesuits themselves still encumber more than aid and are the

focus of several current research programs. Potential improvements face tight integration

between suits and astronaut activities, resulting in many mechanical and computational

challenges. One major area of work aims to alleviate the difficulties of conducting precise

or prolonged movements within a pressurized garment. Powered prosthetic or other

robotic assistance may provide a solution to this problem but creates key operational

challenges. Standard digital or verbal user command interfaces are limited by low

bandwidth and non-intuitive control structures and may prove incompatible with such

devices.

Body language, on the other hand, is one of the most fundamental, natural forms of

communication between human beings. Therefore, tactile control using, for example,

hand or finger gestures seems far more suitable for controlling mechanical effectors,

providing high speed and intuitive spatial relationships between command signals and

desired actions. Flexibility and robustness in controllers like these will likely require

personalized command recognition tailored to individual astronauts. The need for speed

and natural facility will make this capability even more indispensable than in, say, speech

recognition. Command recognition systems could adjust their interpretation rules as

training data is accumulated, improving their precision and following long-term trends as

astronauts develop their working behaviors throughout a career’s worth of extravehicular

activity.

In this project, we propose a relatively simple gesture-based spatial command recognition

system as an analog to more advanced systems suitable for augmenting extravehicular

activities with robotic assistance. The first section of this report conveys the key ideas

behind the optimal margin classifier, the fundamental recognition method at the core our

system. The second section then introduces two different pattern input interfaces used to

collect both training and testing data for the algorithm.

We first we implemented a computer mouse interface for the preliminary analysis of our

algorithm. Although this input method should be very different from any system that may

be used by astronauts in space, it does provide a solid foundation towards the

understanding of algorithmic behavior. Most users are very familiar with the operation of

a mouse and can therefore achieve a relatively high degree of precision in the inputs

without extensive practice. The 2D nature of the inputs also allows for easy visualization.

Next we extended our user interface to an InterSense tracking device capable of detection

spatial motion performed by the user. Gesture patterns collected through this device

would be much closer to those astronauts may use to command their robotic assistants.

Finally, we conclude this report with sections on results and analysis of our data and

possible extensions to our current system.

4

1. Optimal Margin Classifier1

The enveloping problem that a classifier must solve is how to accurately and efficiently
separate one pattern from another given a set of training data (a corpus for each pattern in
question). By maximizing the minimal distance from the training data to the decision
boundary, an optimal margin classifier can achieve an errorless separation of the training
data if one exists. Its strength lies in its ability to identify and eliminate outliers that are
ignored by other classifiers such as those that minimize the mean squared error. Optimal
margin classifiers are also less sensitive to computational accuracy because they provide
maximum distance (error margin) between training set and decision boundary.

1.1 Representation
A pattern is represented by an n-dimensional vector x. Each x vector belongs to either
class A or B, where A corresponds to some pattern of interest and B corresponds to either
another pattern or possibly all other patterns in the universe. The training data consists of
a set of vectors ; we label each +1 or –1 to associate it with a class:
for example, +1 for class A and –1 for class B. A training set containing p training points
of vectors and labels l

pk xxxx KK ,,, 21 kx

kx k would look like:

() () () ()ppkk llll ,,,,,,,,, 2211 xxxx KK , where (1)
⎩
⎨
⎧

∈−=
∈=

B class if1
A class if1

kk

kk

l
l

x
x

Figure 1 gives a visual representation of a training set with five points ()5=p each a two-
dimensional vector of the form []kkk yx ,=x .

Class B

)1],,([55 +yx

Class A

)1],,([22 −yx)1],,([11 −yx

)1],,([33 −yx

)1],,([44 +yx

Figure 1: Example of a simple two-dimensional training set

1.2 Decision Function
Given the training data, the algorithm must derive a decision function (i.e. classifier)

 to divide the two classes. The decision function may or may not be linear in x ()xD

 5

depending on the properties of the corpus. For a classification scheme shown in Equation

� � 0 would be on the boundary between the classes. Any new,1, a decision value of D x

unknown vector x can be classified by determining its decision value: a positive decision

value places x in class A, and a negative value places x in class B.

The decision function is a multidimensional surface that optimally divides the different

classes. In our simple pedagogical example, D is some linear function of x and y that

divides the two classes in a way that maximizes the minimum distance between itself and

the nearest points in the corpus, as shown in Figure 2.

),(yxfD

max d
max d

max d

Figure 2: Decision function for the pedagogical example

The decision function of an unknown input vector x can be described in either direct

space or dual space. In direct space, the representation of the decision function is:

N

x xD� � ¦w M � �� b , (2)i i

i 1

where theM are previously defined functions of x, and w and b are adjustable parameters i i

of D. Here, b is called the bias, i.e. offset of D. In dual space, the decision function is

given by:

p

D� � ¦a K �x , x�� b , (3)x k k

i 1

where the a are adjustable parameters, and xk are the training patterns. Equations 2 andk

3, the direct space and dual space representations of D, are related to each other via the

following relation:

� � . (4)w ¦a M xi k i k

6

K is a predefined kernel function of the form

, i � � � � . (5)xK � x x c� ¦ M M x ci

i

There are many different options for the K function, depending on the structure of the

training data. Since D is linear in all other parameters, the function K determines the

complexity of D : D is linear if K is linear and D is exponential if K is exponential. For

our purposes, we use a linear classifier D in its dual space representation with the

corresponding K function:

K � x x c� x � x c . (6),

1.3 Maximizing the Margin

� � xGiven N -dimensional vectors w andM x , and bias b , D � � w is the distance between

the hypersurface D and pattern vector x . We define M as the margin between data

patterns and the decision boundary:

D l � �xk k t M (7)
w

Maximizing the margin M produces the following minimax problem to derive the most

optimal decision function:

min max D l � � . (8)xk k
1 kw , w

Figure 3 shows a visual representation of obtaining the optimal decision function.

7

w

� � xxM

0

� � 0�xD

� � 0!xD

� � 0bD xwx

M
*

M
*

� �

Figure 3: Finding the Decision Function. The decision function is obtained by determining the maximum

margin M*. Encircled are the three support vectors.

To find the optimal decision function, in the dual space, we optimize a Lagrangian which

is a function of the parameters Į and bias b. It also encompasses the kernel function K via

a p u p matrix H, which is defined by H l l K �x k , x �. The Lagrangian is given by:km k m m

J �D, b� ¦D �1 � bl �� 1D �H � D (9)k k
2

subject to D t ,0 k ,2 ,1 �, p .k

For some fixed bias b, we can find D that maximizes J, and the decision function

becomes
* * D� � ¦ l D K �x , x�� b, D t 0 . (10)x k k k k

k

1.3.1 A Note on Dimensionality

After the decision function is found, the points closest to the decision hyperplane are the

support vectors. If the decision function has no restrictions, then there will naturally exist

at least n �1 support vectors, where n is the dimension of each sample, unless there are

fewer samples in the corpus than n �1, in which case all available samples are support

vectors, and the optimization is reduced to a smaller dimension.

In our pedagogical example of Figure 2, x has dimensionality of 2, so there are

2 �1 3 support vectors. Had there been only two samples in the corpus, the problem

would reduce to 1-D optimization, which dictates that the decision function D must be

the perpendicular bisector of the two points.

8

We can similarly expand that idea to 3-D as shown in Figure 4 and to multi-dimensional

hyperspaces. If there were only three points, then the problem would collapse to a 2-D

optimization, even though the decision function is still a plane. Similarly, if there were

only two points, the problem would be reduced to 1-D optimization, with the plane again

being the perpendicular bisector of the two points.

),,(zyxfD

Figure 4: Example of expansion to multiple dimensions

The dimensionality of x, or the value n, is the product of the spatial dimensions of the

pattern and the number of representative sampling points taken from the pattern. In our

handwriting recognition implementation, the patterns are in 2-D, and each pattern is

represented by 6 sampling points, as shown in Figure 5. Thus, each pattern is represented

by a 12-dimensional vector; and without any restrictions on the decision function, there

should be 13 support vectors.

Figure 5: Sampling 6 representative points from a pattern

1.3.2 A Note on the Decision Function Bias

There are two ways to determine the bias b in the decision function (See Equation 10).

One method is to set the value of b to some constant a priori. This works best when we

know some information about the corpus. For example, we may know that the training

data fits nicely on both sides of the x-axis and that it is fairly symmetric. In such a case,

9

we may want to set b = 0 a priori, as shown in Figure 6. When b is fixed to some constant

value, the number of support vectors is decreased by 1. In fact, sometimes support

vectors for decision functions with fixed b may be from the same class.

D x 0� � w � x

� � 0�xD

� � 0!xD

M
*

0

Figure 6: Decision function with bias set to 0

If we know that the corpus is not best described by 0 or some other fixed value, but we

know that the corpus is nicely distributed, we may want a bias that enables the decision

function to go through the midpoint of the centroids of the two classes. This can also be

done by setting the origin of the hyperspace to be at that midpoint and set the bias to 0.

Finally, the bias b can be made to vary with the parametersD if some of the support
 2

vectors are known. To obtain D independent of the bias, see Vapnik . Suppose we know

the support vectors x � class A and x � class B . The decision values of the two supportA B

� � �1 and D xvectors are known: D x � � �1. Then the optimal bias b * is given by:A B

1 p
* * b � ¦ l D >K �x , x �� K �x , x �@. (11)

2
k k A k B k

k 1

10

2. Implementation Methods
The overall implementation of the project consisted of several main portions: the user

input mechanisms, the input patterns, the optimal margin classifier algorithm, and our

analytical tools. An overview of the components in the project implementation can be

seen in Figure 7. The program controlling the 6D user input and DOF tracking device is

written in Python. All other software components of this project are implemented in

Mathematica.

Classifier

Circles and

Lines

Handwritten Hand

Gestures

6 DOF Tracking

DeviceTouchpad

2-D User Input

Analysis

6-D User Input

Optimal Margin

Numerals

Computer

Figure 7: Project implementation overview

2.1 User Input Mechanisms

Two types of user inputs are used in our implementation: 2D planar inputs through a

computer mouse and 6D spatial inputs through the InterSense tracking device.

2.1.1 Handwriting Input

The planar input mechanism is a two-dimensional drawing pad implemented using the

GUIKit package provided by Mathematica 5.1. Initially, the program displays a pop-up

11

window for the user to input the desired symbol. After the user completes the input and

closes the window, �x, y� positions of each point in the symbol is refreshed at machine

speed and saved chronologically into a matrix.

In the user input window, the � 0,0 � point is at the top left corner and the positive y-axis

points downward, which is opposite from usual plotting convention; so when visualizing

the data, we take the negation of the y values in order to upright the symbol.

During the actual user input process, the length of the input data may vary depending on

the speed at which a symbol is drawn. However, in order to calculate the decision

function between 2 classes, all x vectors in both corpuses for the classes must have an

equal number of points (dimensions). Also, a typical user input symbol may lead to a data

stream of 40 or 50 points, which is much more than what is needed to distinguish the

classes. Therefore for most of our analysis, we sample a set 6 evenly spaced points from

each symbol and run our optimization algorithm on a collection of such 6 point symbols.

Part of our analysis also deals with the variation of this sample size and its effects on

algorithm performance. Figure 8 shows the progression of the data from the user input to

the sampled data matrix.

Figure 8 Evolution of a circle. a. The user inputs a two-dimensional figure into the drawing window using

a mouse or keypad, b. Points are recorded at machine speed, c. Six points are sampled, and d. their (x, y)

positions generate a 6 u 2 matrix.

Note that in the user input window, the visual feedback of the hand-drawn figure is

continuous and starts at the � 0,0 � point, but the � 0,0 � point will not be part of the actual

data record. Also note that Figure 8c appears to have 5 sample points instead of 6 only

because the first and last points are almost coinciding. Once a sampled matrix as shown

in Figure 8d is generated, it is transformed into a single data point in

the 6 u 2 12 dimensional hyperspace. From there it will be fed into the optimal margin

classification algorithm as discussed in Section 1.

2.1.2 Gesture Input

For spatial data, we use a unique piece of hardware called the InterSense tracking
3

device , which consists of an inertial measurement unit (IMU) containing a gyro and an

accelerometer to monitor angular travel and velocity, which mostly provides the pitch,

yaw, and roll information. The tracking device uses two ultrasound beacons to

12

directionally position itself in 3-D space, providing �x, y, z� information. The aperture is

held by the user like a wand at one end. Figure 9 shows the aperture setup.

Handhold

Ultrasound beacons

IMU

Figure 9: User interface for spatial inputs

The ultrasonic beacons transmit signals to receivers located in fixed locations several

meters over head. There are four ultrasonic receivers situated on a crossbar that is fixed to

the ceiling, as shown in Figure 10. The absolute spatial origin of the tracking system is

calibrated to be the exact point on the ground directly below the center of the crossbar.

When gathering gesture data, the user sat on a chair positioned over the origin, so that the

range of �x, y, z� positions would be generally centered around � 1,0 ,0 � , in meters.

receivers

Ultrasonic

Figure 10: Ultrasonic receiver module crossbars on the ceiling

The ultrasonic transponder beacons are line-of-sight devices, meaning that they cannot

operate when the line-of-sight between the transponder and receiver is blocked or if the

transponder is tilted at a steep angle. The ultrasonic beacons do have about 70 degrees of

sight from vertical, as shown in Figure 11, so the line-of-sight issue is usually not a

problem. For our implementation, we kept to gestures that did not require turning the

aperture upside-down.

13

70°70°

Figure 11: 140 degree conical range of ultrasonic beacons.

The data generated by the InterSense tracking device is accurate to a few millimeters, and

each recorded point contains 6 variables � x, y, z,T ,M ,I � . For each gesture pattern, we also

extracted 6 representative sample points from the record of all points in the pattern, so

each element of the gesture corpus is a 6 u 6matrix, or in other words, the hyperspace is

36-dimensional.

The software that the InterSense tracking device runs on is called Vizard, which runs

code in Python language. We programmed the software to run non-stop with a continuous

timer and keyboard control of start and stop gesture sequences. The gesture sequence data

would be instantaneously saved to a file that can be later analyzed by our algorithm code

in Mathematica.

We selected the InterSense tracking device as our hardware input component because a

similar device or device with similar principles could be integrated into a spacesuit for

astronaut gesture recognition. For this application, the device can exploit the rigid nature

of spacesuits. The receivers could be attached to the astronaut’s helmet and/or parts of the

upper torso of the spacesuit. The beacons could then be attached to part of the glove or

even on a segment of the finger portion of the glove if the devices could be made more

compact. In this case the �x, y, z� components would be recording the position of the

astronaut’s hand relative to his/her body, and all of the same principles discussed in this

section would still apply.

2.2 Input Patterns of Interest

2.2.1 Circles and lines

In the 2-D user interface environment, the first test of the algorithm demonstrates

distinction of two very different figures, such as circles versus lines. The circles in the

corpus are all drawn in the same direction, in our case, counter-clockwise, and the lines

are all drawn from the top right corner to the bottom left corner. Figure 12 shows a

typical representation of the user inputs for circles and lines. Note again that the visual

feedback starts at the � 0,0 � point and connects to the first point in the figure.

14

Figure 12: Typical user input circle and line

A corpus of 5 circles and 5 lines was used to determine the decision function. Twenty test

inputs were implemented for evaluation. Upon deriving the decision function, we

generated an interpolation sequence between a circle and a line to find the figure that has

a decision value of 0, or in other words, a figure that sits on the class boundary between

circles and lines for a certain representation of circles and lines. This pattern is shown in

Figure 13. This figure can be a guideline for predicting which figures will be classified as

circles and which will be classified as lines.

Figure 13: Between circle and line. This is a pattern that has decision value of 0 for a certain

representation of circles and lines

2.2.2 Numerals

It seems that distinguishing two very different sets of figures from one another is trivial.

We demonstrated the algorithm’s ability to correctly classify different numerals, and

following that, we decided to take on the challenge of distinguishing one person’s

handwriting from another’s, as this distinction is sometimes difficult even for a human

observer. This is implemented by two people generating corpuses of the numeral “2,”

“3,” and “4,” and running test inputs over the corpuses to determine the accuracy of the

15

classification. An example implementation is shown in Figure 14, where the corpuses of

“2”s are generated by two different people, and 6 points are sampled out of each “2.”

Each person generated corpuses of around 20 elements for each numeral. Twenty test

inputs were implemented for evaluation.

Figure 14: 2’s vs. 2’s. The sample set of the corpus of “2”s generated by person A is on the left and person

B’s is on the right

2.2.3 Gestures

Three different gestures were implemented for testing purposes, including the “come

here” gesture, lifting gesture, and pointing gesture. Two different persons generated

separate corpuses for all three gestures of 10 elements each. Twenty test inputs were

implemented for evaluation.

16

3. Results and Analysis
In the following analysis, we verify the behavior of the optimal margin classification

algorithm against theoretical intuition and assess the performance drivers in

implementation relevant to our applications. We also attempt to explain any unusual

results, particularly where they adversely affect performance. We use basic shape

identification (circles and lines) to illustrate general features of the algorithm, then

conduct a more thorough analysis using handwriting recognition, before moving to the

more challenging application of recognizing human gestures. Unless stated otherwise, all

gesture and figure recognition results reported use 6 sample points per pattern and 10 of

each type of pattern per training corpus.

3.1 Basic Shapes: A First Look

As described earlier, two-dimensional figures are converted to patterns by uniform

sampling of points from the cursor path and concatenation of these coordinates into

higher-dimensional vectors. A linear optimal margin classifier then constructs a

separating hyperplane in the pattern space that maximizes the distance from the

hyperplane to the nearest pattern(s) in each distinct class (the support patterns).

We can observe the optimization behavior of the algorithm by examining the Euclidean

distances from corpus patterns to the resulting hyperplane boundary. Figure 15 illustrates

a typical example of this optimization: the corpus for each shape (shown in gray) contains

five training examples, but the supporting patterns from each class lie at equal distances

from the hyperplane and are barely distinguishable, while the support patterns for the two

classes also lie at equal distances.

Figure 15: Euclidean distances from basic shapes to a separating hyperplane (solid line) in pattern space.

The first horizontal segment illustrates the midpoint-bias classifier for circles, the second for lines; with

only two classes, these classifiers produce mirror images. The classifier maximizes the minimum distance

from the hyperplane to the pattern classes in the corpus (gray), which it then uses to separate independent

test patterns (black).

17

Because our algorithm positions the hyperplane with a fixed bias (at the origin or at the

midpoint of corpus centroids), in some cases the support patterns may lie all in the same

class. In this case, the distance from the separating hyperplane to the nearest pattern in

each class may no longer be equal despite the equidistance of the support patterns to the

boundary. Figure 16 shows an example of this situation resulting from a zero-bias

classifier applied to a corpus containing ten training samples each of circles and lines.

Figure 16: Distances to the separating hyperplane of a zero-bias classfier for circles and lines on a 20

sample corpus. When all support patterns lie in one class, the minimum distances to each class need not be

equal.

Unequal (and thereby suboptimal) separation is an inherent risk of our fixed-bias

approach. As we shall see, it rarely prevents effective separation of the corpus in our

applications. However, there are pathological cases in which it can render the linear

classifier impotent: these occur when the pattern clusters corresponding to the two classes

to be separated both lie close to a ray emanating from the origin defined by the bias in

pattern space.

As an example, we divide the coordinates of the circles in the corpus used above by a

factor of five to produce a corpus of “scaled” circles lying between the origin and the

original corpus. With zero bias, the optimizer fails to converge and the algorithm returns

the solution shown in Figure 17, failing to separate either the corpus or the test data. In

our examples, this weakness is rarely problematic, particularly since the likelihood of

angular conjunction falls with increasing dimension of the pattern space for a given

dispersion within classes.

18

Figure 17: A pathological case constructed by scaling the circle corpus relative to the origin illustrates the

potential pitfalls of fixed bias: the classifier fails to separate either the corpus (gray) or the test patterns

(black). However, this problem rarely creates difficulties in our applied examples.

The related restriction to linear classifiers (that is, defined by hyperplane boundaries)

limits the pattern space geometries that can be effectively handled by the algorithm:

clearly, only classes that lie on either side of a hyperplane may be separated. Problems

will arise whenever a class totally or partially “surrounds” another. This may have

implications for separating specific patterns from generic background “noise,” which can

easily pervade the surrounding pattern space.

As an example, we optimize a classifier to distinguish between circles and patterns

formed from uniformly random points within the two-dimensional canvas domain.

Because the points sampled from circles lie at the outside edges of the domain, the class

is not well surrounded by a small set (10) of random patterns, and can be barely separated

from the noise (Figure 18a). If we generate alternative corpuses with smaller circles

(constructed by shrinking the original circles toward their centers), we find that the noise

increasingly surrounds the patterns of interest and prevents effective linear separation

(Figure 18b,c).

Note that we have shrunk our sample resolution to two sample points per figure in this

example in order to obtain a pattern space dimension of four, allowing the circles to be

easily surrounded by a small number of random points; with larger dimension, many

more random points are required to defeat hyperplane classifiers. In our applications, we

rely on a sufficiently low dispersion among classes avoid this issue altogether.

19

Figure 18: Distinguishing circles from random figure “noise” become increasingly difficult as the size of

the circles relative to the canvas decreases and the circle classes become surrounded by the noise; the

dispersion eventually overwhelms the algorithm. “Small” circles are reduced in size by a factor of 2, “tiny”

ones by a factor of 5.

20

3.2 Handwriting Recognition: Performance Drivers

We used the domain of handwriting recognition as a comprehensive, realistic, yet

relatively simple testbed to examine the capabilities and performance drivers of the

algorithm. The less challenging task consisted of distinguishing different numerals (“2,”

“3,” or “4”) written by the same test subject. The more challenging task consisted of

distinguishing the same numeral written by two different test subjects.

Distinguishing between numerals in our approach required constructing three optimized

boundary hyperplanes, one to separate each numeral class from its complement in the

training corpus. In these cases, midpoint-bias classifiers consistently placed the boundary

hyperplane further from the class of interest than optimal, as one might expect (Figure

20). The midpoint bias is based on the assumption that the dispersion of the classes on

either side of a boundary will be roughly equal, but the dispersion of a set of classes will

be greater with respect to the distance between centroids than that of a single class, hence

the complement of the class of interest will lie closer to the boundary than the class itself.

Zero-bias classifiers also showed strong asymmetries, but their direction depended upon

the gestures themselves: those further separated from the others (“point,” and “come” for

Subject 1) enjoyed greater margins with respect to class boundaries, again as expected

(Figure 19). However, the dispersion within classes was small enough that neither form

of asymmetry prevented achieving perfect accuracy on both corpus and test data.

In distinguishing the identical numerals made by different subjects, we can see the

difficulty of the problem in the greater dispersion of classes relative to the distance

between the classes and the separating hyperplane (Figure 21). Though the corpus is still

well separated, the test data spills over the boundary in several cases. A midpoint bias

gives slightly more asymmetric separation boundaries (Figure 22), most likely due to

differences in variability between the different subjects.

21

Figure 19: Hyperplane distance distributions for distinguishing numerals with zero bias for each subject.

Asymmetries in minimum distance are governed by the relative proximity of classes.

22

Figure 20: Hyperplane distance distributions for distinguishing numerals with midpoint bias for each

subject. Hyperplanes tend to lie close to the complement of the distinguished class.

23

Figure 21: Hyperplane distance distributions for distinguishing subjects with zero bias for each numeral.

The classifiers achieve near-optimal separation on the corpus, but variability is high enough to create

overlap in the test data.

24

Figure 22: Hyperplane distance distributions for distinguishing subjects with midpoint bias for each

numeral. The classifiers achieve slightly less symmetric class separation than the zero bias classifiers; again

variability is high enough to create overlap in the test data.

25

We now analyze the accuracy of the two approaches on handwriting recognition tasks,

and its variability with corpus size and pattern sampling resolution. The corpus size

governs the dimensionality of the optimization problem to be solved in determining the

optimal margin classifier: the number of optimization parameters is equal to the number

of training patterns in the corpus. In the examples following, we test corpus sizes of 1, 2,

3, 5, 7, and 10, with a sample resolution of 6 points per figure. The number of support

patterns determining the final classifier can be as large as one greater than the

dimensionality of the pattern space, but can also be limited by the number of training

patterns available (in which case the problem is reduced by projection to one of lower

dimension).

The dimensionality of the pattern space is directly proportional to the sampling

resolution: in this case, dealing with two-dimensional points, the representation of each

pattern has dimension equal to twice the number of sample points. For instance, our

results above using 6 sample points lead to a 12-dimensional pattern space. In the

examples following, we test sampling resolutions of 2, 3, 5, 10, 20, 40, and 80 points per

figure, with a corpus size of 5 patterns. All evaluations are done using 10 test patterns

independent of the corpus.

The algorithm performs perfectly in distinguishing numerals from one another for all

cases tested, so we will not consider these results further. Instead, we look at results for

distinguishing between subjects writing identical numerals. Here the results for zero bias

and midpoint bias are identical, reflecting that calculated midpoints lie near zero. Figure

23 shows the sensitivity of test pattern classification accuracy to corpus sample size;

though the corpus is perfectly separated in all cases, increasing corpus size generally

improves accuracy, with fluctuations attributable to the strong influence of individual

patterns in a small corpus. With corpus sizes of 10, accuracies consistently reach the

range of 80-90%. Figure 24 shows the sensitivity of accuracy to figure sample resolution,

which generally levels off at fairly low sampling rates. This is not surprising given the

limited amount of additional information provided beyond a fairly coarse sampling of a

handwritten figure.

The desired approach for training will depend upon the relationship of computational

effort required to each of these variables. These relations are shown in Figure 25.

Computational effort appears to correlate with the ~4.5 power of corpus size; while still

polynomial, this strong influence is prohibitive, and may motivate possible

decompositional techniques discussed later on. Surprisingly, run time initially drops with

increasing sample resolution, reflecting a quicker optimization process. This may be

attributable to smoother local maxima resulting from the increased dimensionality and

separation of classes in the pattern space, which make it faster to find the global

maximum. These results suggest using as much sample resolution as available in the

input data for recognition, but limiting the corpus size to that necessary to achieve the

desired accuracy. We should note that the results presented here depend strongly upon the

optimization algorithm employed (here a version of Nelder-Mead), and may change with

the use of more specialized quadratic optimization techniques.

26

Figure 23: Accuracy versus corpus size for subject classification (zero and midpoint offset results

identical). Results on test patterns (black) generally improve with increasing corpus size, though the corpus

is perfectly separated in all cases (gray). Fluctuations may be attributed to the strong influence of individual

patterns in small corpuses.

27

Figure 24: Accuracy versus sample resolution for subject classification (zero and midpoint bias results

identical). Results on test patterns (black) seem to reach limiting accuracy at fairly low resolutions, though

the corpus is perfectly separated in all cases (gray). Fluctuations may be attributed to the strong influence

of individual patterns in small corpuses.

28

Figure 25: The computational effort required to compute the optimal margin classifiers for varying corpus

size and sample resolution. Using our optimizer, run time appears to increase as the ~4.5 power of corpus

size, while it drops to a limiting value with increasing sample resolution.

29

3.3 Gesture Recognition: Putting it All Together

Most of the patterns observable in our results for gesture recognition are familiar from

handwriting recognition, so we will summarize them and focus on the noticeable

differences in this more advanced application.

First, note that variability in patterns (with respect to the hyperplane margin provided by

the classifier) and asymmetry in class separation are large enough that distinct gestures

are no longer recognized with perfect accuracy (Figure 26). In this case, the results for

zero and midpoint bias are identical, reflecting a midpoint very close to zero in each case.

These results suggest finding a mechanism to move the bias closer to the class of interest

in multi-class separation.

Figure 26: Hyperplane distance distributions for distinct gesture classes (zero and midpoint bias results

identical). Note that variability is high enough with respect to the margins that some test patterns spill over

the separation boundary provided by the classifier.

30

Zero and midpoint offset results are also identical for distinguishing subjects making the

same gesture. The margins are wide enough for the point gesture to achieve perfect

accuracy on test patterns as well as the corpus, and nearly so for the other gestures (all

have perfect, relatively even corpi separation).

Figure 27: Hyperplane distance distributions for distinguishing subjects making identical gestures.

31

Unlike in the case of handwriting recognition, classification of distinct gestures made by

the same subject is no longer perfect, but shows strong improvement with corpus size,

particularly above a threshold of ~3 training patterns each. Only the “Come” gesture for

Subject 1 seems unusually problematic. (Figure 28)

Figure 28: Accuracy variation with corpus size for distinct gestures shows strong improvement to near

perfection above a critical threshold of ~3 training patterns each.

The variation of accuracy with sample points per gesture again shows a strong threshold

effect, reaching perfection at only 5 points per motion with the exception of Subject 1’s

problematic “Come” gesture.

32

Figure 29: Accuracy variation with sample resolution for distinct gestures shows strong improvement to

near perfection above a critical threshold of ~5 sample points per gesture.

Looking at accuracy for distinguishing subjects making identical gestures, we again see

promising results with increasing corpus size, though it is possible one or two gestures

may level off slightly below perfect recognition. (Figure 30)

The threshold of limiting accuracy for sample resolution appears slightly higher for

gesture recognition (~10 points per gesture), which makes sense given that the pattern

space dimensionality is three times higher, so that the threshold of full determination of

hypersurfaces by support patterns is likewise tripled. (Figure 31)

33

Figure 30: Accuracy variation with corpus size to distinguish different subjects shows strong improvement

to the 80-100% range above a critical threshold of ~5 training patterns each.

34

Figure 31: Accuracy variation with sample resolution to distinguish different subjects shows strong

improvement to the 80-100% range above a critical threshold of ~10 sample points per gesture.

35

The trends for computational effort with respect to corpus size and sample resolution are

virtually identical to those for handwriting recognition. This is not surprising given that

the primary distinction between the problems is an increase in dimensionality of the

pattern space, which as we have seen has minimal effect on run time. The higher

variation seen in the gesture recognition domain does not appear to significantly affect

the performance relationships of the algorithm (Figure 32). The resulting

recommendations for best performance are thus unchanged.

Figure 32: The computational effort required to compute the optimal margin classifiers for varying corpus

size and sample resolution closely parallels results observed in handwriting recognition.

36

4. Possible Extensions
This section covers some extensions to our project that we thought about or partly

implemented but seemed out of the scope of our project to complete.

4.1 Pattern Recognition Given Continuous Input

At the moment, all our classifiers are tested using only discrete test inputs. This means

that the program must know exactly when an input will arrive in order to perform the

required pattern recognition. In the astronaut gesture recognition scenario, this could

correspond to a switch or button of some sort that the astronaut must turn on before

making a meaningful gesture. While this switch and discrete gesture method could

certainly be used in real world applications, it may prove unnatural and unnecessarily

increase the user’s workload. A desirable alternative would be a program capable of

recognizing a meaningful gesture among a continuous stream of data containing all user

actions, meaningful or otherwise.

In our system, we were able to adjust our hardware interface program to export two

simultaneous outputs. One continuously records user motions as a list of six dimensional

vectors while the other selectively records part of the user motion. For the latter output,

recording can be turned on or off by way of a single keyboard stroke, and discrete

segments are separated by a divider symbol. This interface system allows us to use the

same gesture sequence for both discrete and continuous gesture recognition; it not only

cuts down the testing data generation time, but also provides the means for direct

comparison between discrete and continuous recognition using the exact same gesture.

Unfortunately, we were unable to complete the code required to analyze continuous data;

however, we were able to identify some important features needed in order to extend our

program to handle such cases.

Since we do not know when a meaningful gesture will appear among motions made by

the user, we must continuously run the 6 dimensional vector sequences through the

classifiers. To accomplish this, we would like to implement a buffer that moves along the

data stream at some predetermined step size. A buffer in this case is an imaginary slide of

a fixed length. There should be a different buffer for every classifier. At each step, the

data contained within a buffer will be tested against the associated classifier to look for a

match, as visually depicted in Figure 33.

Classifier

Buffer at t1

Classifier

Continuous data streamBuffer at t2

Figure 33: Buffer along continuous data stream. To perform dynamic classification over a continuous

data stream, we step through the data stream with a classifier as comparison at each time step

37

One problem with using a fix buffer is that the length of a gesture is not fixed. As an

approximation, we can use the average corpus gesture length as the buffer length;

however, we risk missing gestures due to length variations. Therefore it may be necessary

to add to the training data set meaningful gestures with the ends chopped off or extended.

The choice of step size for the buffer can also affect the performance of the program. We

could shift the buffer by one data point per step, which gives us the best chance of finding

a meaningful gesture if one exists. However, this may be too computationally demanding.

Increasing the step size would improve the computational performance, but could also

decrease the accuracy of the algorithm. The optimal step size can only be determined by

amble testing and may vary from gesture to gesture.

4.2 Distinguish Pattern from Non-pattern

All of the testing presented in this report consists of classifiers separating different

classes of gestures from one another or separating the same gesture made by different test

subjects. We have not constructed or tested a classifier dividing a class from all data

patterns not contained in that class. The key reason for not performing this test is that for

discrete data recognition, we know that each input should match one of the predetermined

patterns: if an astronaut turns on the recognition switch and then makes a gesture then the

gesture should not be random. However, this is not true for continuous data recognition.

In this case, meaningless gestures are made between meaningful gestures, and the

classifiers must be able to distinguish one from the other in order to successfully filter out

and recognize the astronaut’s intentions. This type of data classification presents some

issues.

First of all, generating the complete set of meaningless data is not easy because it consists

of all possible patterns aside from the one meaningful pattern that we aim to recognize

(see Figure 34). But as an approximation, we could record a set of typical motions made

by a test subject within a certain work environment and use that as the opposing class.

However, the effectiveness of this data generation method cannot be determined without

thorough testing.

38

Figure 34: Pattern against non-pattern. The blue points represent a cluster of four data points for a class

of patterns, the red points represent other pattern that does not belong to that class, and the solid curve

around the blue points represents the classifier between pattern and non-pattern points.

Also, data corresponding to a specific pattern follows a certain trend: for example, they

could form a cluster within the space of all possible patterns. And all of our test cases

involve distinguishing a specific pattern from other distinct patterns. Since the classifier

only needs to provide a barrier between distinct groups of patterns, one can see how a

linear decision function would work well in this case (refer to Figure 2). However if we

extend our program to handle the case of recognizing pattern from non-pattern then a

linear classifier may or may not be acceptable. In Figure 34 we see that if the blue points

represent a pattern cluster then the red point must cover all space around the blue points.

In this case, a linear classifier cannot possibly distinguish one class from the other.

Therefore, a program that processes continuous data may also require the ability to

determine the optimal or at least an acceptable classifier, linear or otherwise.

4.3 Alternative Classification for Multiple Classes

All classifiers discussed so far only deals with binary classification between two classes.

Therefore, when testing with n classes (n > 2), we calculated n classifiers, each

distinguishing a specific class from the rest (see Figure 35). The subsections below

discuss some possible alternatives to this approach for handling classification of multiple

classes. However, these are only ideas, and we do not have sufficient data to show

whether they work in practice.

39

Figure 35: One classifier per class for multiple class classification. The red, green, and blue points

represent different classes. The 3 lines represent the 3 classifiers used to separate these classes. The red

classifier separates the red pattern from the blue and green, the blue classifier separates the blue pattern

from the red and green, and the green classifier separates the green class from the red and blue.

4.3.1 Single classifier for Multiple Classes

The idea here is to use one classifier to distinguish more than two classes of patterns.

Here we once again visit the notion that data for a single pattern lies in a cluster, away

from other patterns. In fact, during testing, we noticed that data for a specific pattern tend

to lie a similar distance away from the decision boundary. This opens the possibility of

using one classifier to distinguish multiple classes by assigning a range of decision values

for each class. Instead of having D ! 0 correspond to class A and D � 0 correspond to

class B, we could have classes A, B, C, etc., where �a � D � b�o A class ,

�b � D � c�o B class , �c � D � d �o C class , etc.

Figure 36 shows a single classifier used to distinguish 4 classes. Assume the red and

green classes rests on the positive side of the classifier and the black and blue on the

negative, then the distances a, b, c, and d should have the property b � � � a . If a, b,d c

c, and d are average distances from a class to the classifier, then we could use the

b � d
following rule or a similar one to distinguish the classes: for pattern x, if D� � � ,x

2

b � d � � � 0 , then x belongs to the blue class, etc. then x belongs to the black class, if � D x
2

Intuitively, this approach should work best when dealing with patterns that are dissimilar

from one another.

40

Figure 36: One classifier for multiple classes. The red, green, black, and blue points represent 4 distinct

classes. The black line is the single classifier used to distinguish these classes. The red, green, black, and

blue arrows labeled a, b, c, and d are representative distances from their respective classes to the classifier.

4.3.2 Binary Tree-Structured Classifiers

Also, instead of calculating a classifier for each class we could separate all classes into

two groups with a classifier dividing the groups, and then further separate and divide

each group. For example, in Figure 37, assume the red and green classes rest on the

positive side of the black classifier, and the green class rests on the negative side of the

red classifier. In this case if D x � � � 0 for the red� � ! 0 for the black classifier and D x

classifier, then pattern x belongs to the green class. However, with this method also

comes the question of how best to divide the classes into groups in order to obtain

maximum separation between groups.

41

Figure 37: Binary, tree-structured classifiers. The red, green, black, and blue points represent 4 distinct

classes. The black, blue, and red lines represent classifiers. The black classifier separates the red and green

class from the black and blue class. The blue classifier further separates the black class from the blue class,

and the red classifier separates the red class from the green class.

42

Conclusion

In this paper, we have described the optimal margin classifier algorithm in detail. We also

described the implementation of this algorithm with respect to our test environment, and

conducted an analysis of the algorithm using our test results. Our implementation may be

useful for future space flight activity because we can conceivably integrate the small

hardware components into an astronaut’s spacesuit so that a robot in collaboration with

the astronaut would be able to detect the astronaut’s arm and hand gestures. Further work

is required to fully develop this capability.

43

Acknowledgements
The authors of this paper would like to acknowledge the MIT Man-Vehicle Laboratory

for providing us with the InterSense tracking device which was used in the gesture

recognition portion of our project implementation. Specifically, we would like to thank

Dr. Andrew Liu for his support of the project by aiding us with the hardware equipment

setup.

44

References
1
B. E. Boser, I. Guyon, and V. N. Vapnik, “A Training Algorithm for Optimal Margin

Classifiers”, In the Proceedings of the Fifth Annual Workshop on Computational

Learning Theory, pps144-152, Pittsburgh 1992.

2
 Vladimir Vapnik. Estimation of Dependences Based on Empirical Data. Springer

Verlag, New York, 1982.

3
 InterSense. IS-600 Precision Motion Tracker User Manual.

45

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

