
A Bayesian Net Inference Tool for Hidden State in Texas Hold’em Poker

Michael A Terry
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

32 Vassar Street

Abstract

We present the design, implementation, and evaluation

of a tool for performing common inference tasks in the

game of Texas Hold’em Poker. The design was based

upon the generation of inferences from a Bayesian Net,

which was generated from a combination of expert

knowledge and Machine Learning of a large archive of

previously played hands. Combining this data and ex

pert knowledge of the problem domain, we generate a

large database training set in terms of our variables of

interest. Using the freely available Matlab Bayesian

Net toolkit, we apply domain knowledge to generate

topology for the Bayesian Nets, and use Matlab Bayes

Toolkit’s Maximum Likelihood parameter estimation to

learn the parameters for this structure. Finally, we eval

uate our sytem’s ability to predict an opponent’s hole

cards in Texas Hold’em given our representation.

Introduction

One of the key goals in Artificial Intelligence is to create

cognitive systems that can perform human-competitive rea

soning tasks. When a particular problem domain requires

that inferences be made with limited information, an ad

ditional element of difficulty is introduced. In real-world

problems, one typically does not have all of the informa

tion necessary to make a completely informed decision, and

must either perform an action to receive that information, or

make an educated guess regarding the best plan of action.

A number of challenges arise when attempting to develop

reasoning systems which emulate this type of intelligence.

Brian E Mihok
The Charles Stark Draper Laboratory, Inc.

555 Technology Square

Cambridge, MA 02139-3563

One of the main challenges is formulating a well-

defined problem and appropriate computational represen

tation within which to perform experiments. Games have

traditionally provided many problems in Computer Science

with an excellent test-bench for new ideas, because they can

be clearly described in terms of set rules and well-defined

sets of actions. Games of imperfect information (hidden

state) provide models for an even broader range of problems,

because they address the issues of uncertainty typically as

sociated with most difficult inference tasks.

In addition, most games have expert strategists, which

can provide additional insight into the design and evaluation

of intelligent systems. As we will show in this paper, this

incorporation of domain knowledge is an important theme

amongst many techniques in Artificial Intelligence. Har

nessing the knowledge accumulated by humans into the de

sign process is often critical, and provides a great deal of

benefit to the end-product.

A recent worldwide explosion in the popularity of Poker

has stimulated interest in the game in many areas of Com

puter Science research. The most common form of poker,

Texas Hold’em, is a game of simple rules and complex

strategies. As in most cards games, much of the state infor

mation is hidden to the player. In addition, because there are

complex interactions between multiple adversaries, it pro

vides a great application for reasoning methods associated

with multi-agent environments. Furthermore, because it is a

zero-sum game of chance (odds) and clear rewards (money),

one could conceivably extend many of the concepts for rea

soning in Hold’em to disciplines such as Economics.

This paper presents our efforts to design, implement and

evaluate a system for Bayesian inference in the domain of

Limit Hold’em Poker. To address these tasks of reason

ing under uncertainty, we investigate the possibility of using

probabilistic inference methods that fall under the umbrella

of Statistical Learning. These techniques have been used in a

number of problem domains, and demonstrate a great deal of

success and recent advances in Computer Science research.

The next section of this paper describes the background in

formation related to poker strategy and the statistical infer

ence methods we have incorporated into our design. This

is followed up by the requirements and motivation for our

systems. Next, the design tradeoffs associated with our par

ticular implementation are presented. Finally, we describe

the results from our inference system on a number of valida

tion tests.

Background

Games

Throughout this history of Games and Artificial Intelligence,

a number of significant benchmarks have been achieved by

computers that can produce human-competitive strategies.

In the textbook example, Chess has been shown to be ’solv

able’ through exhaustive search methods. The degree of suc

cess of this approach is highly determined by the overall

computational power of the hardware platform. However,

in comparing these search algorithms (i.e. minimax) with

the nature of human strategic reasoning, the parallels be

tween the two are minimal. Humans reason according to re

lationships between different types of moves and positions,

and determine a strategy accordingly. This is entirely dif

ferent from machine strategy, which usually involves some

calculations/evaluations and the use of heuristics. Essen

tially, humans are able reduce the search space of their ex

ploration, based upon domain knowledge with seemingly lit

tle effort. More recent efforts have shown the possibility of

capturing domain knowledge into search of a solution space

(Koza et al. 2003). Although these and similar techniques

show promise for performing a seemingly more intelligent

search for solutions, the problem of representation of this

domain knowledge remains a significant challenge. In addi

tion, when a particular problem domain introduces elements

of uncertainty, the level of complexity of this representation

further increases. Poker is a game of uncertain information

and complex strategy. Although the rules and action possi

bilities are very simple, good human strategy incorporates

factors such as deception(i.e. bluffing), odds, and psychol

ogy. Thus, brute-force tactics would not be sufficient for de

termining an effective strategy. Unlike chess, algorithms for

poker strategy must incorporate a concise representation of

a great deal of domain knowledge, much of which is related

to the uncertainty of the game. However, information about

rules, strategy information, and other nuances of a particular

problem domain are difficult to represent in machines us

ing the programming techniques and data structures of mod

ern digital computers. One intuitive way this information

is conveyed in machine learning is through the description

of game factors as variables. In games, a variable can rep

resent a wide range of concepts including those related to

the physical, conceptual, temporal realms. Rules of a game,

a player’s actions, and relevant state information can all be

captured through the declaration of domains and variables.

In machine learning, examples of actions in a game are pre

sented in terms of these variables, and algorithms are used to

’learn’ the patterns or relationships between these variables.

When uncertainty is involved, Bayesian Nets provide a way

to model probabilistic information, given some evidence or

observations about the situation. These technique apply very

well to the domain of poker, since the variables of interest

are closely tied to the uncertainty of information.

Poker Strategy

In poker the goal is to maximize the expected value over all

of your actions, so that a player sees the maximum long-

term winning over a number of hands. Given a wide variety

of information available at every stage in the game,session,

or tournament, one must make their decisions to maximize

this expectation. In live action poker, not only does a player

have information about the game actions of an opponent, he

also has a wide variety of physical cues, or ’tells’ regarding

an opponent’s actions from which to infer information about

the state of the game. These cues are critical for live action

play, but nearly absent in Internet poker play. Fortunately

for a computer inference strategy, this means a reduction in

the number of variables it can take into account.

Good poker strategy incorporates numerous levels of

thinking regarding the multitude of variables available to a

player. Every action in the game releases more information

about the hidden state of the game(opponents’ hole cards),

and the player must use this information to construct a model

about the state of the game. Our goal in this project is to gen

erate a representation of the hidden state in Hold’em, and

construct an inference tool to extract this information from

betting patterns in a database of statistics from previously

played hands.

To illustrate the complexity of inference tasks an interme

diate player may consider in Hold’em, consider this simpli

fied two-player scenario between the Hero and the Villain, a

habitual bluffer.

Pre-flop actions:

Hero holds the Queen of Clubs and King of Clubs.

-reasoning that his starting cards above average,

Hero raises.

Villiain calls the raise.

They both proceed to the next round.

Flop: Two of hearts, Queen of hearts, Jack of spades

-reasoning his hand is strong(pair of queens), and his

hand can get stronger(straight),

Hero bets.

Villain calls.

Turn Ace of hearts. -Hero reasons that the Ace hurts his

overall ranking

-despite this belief Hero continues to show strength. A

check here would reveal too much weakness.

Hero bets.

Villain raises.

At this point, the Hero is put in a tough situation and must

think on multiple levels about how to act. Hero looks to

answer questions of the following type:

•	 How strong is my pair of queens compared to other pos

sible hands? Is the size of the pot big enough to justify

proceeding with a weaker holding?(Level 0)

•	 What is the likelihood that my opponent holds an ace?

(Level 1)

•	 What does he think I have? Does he know that my hand

becomes much weaker when an Ace hits the turn? (Level

2)

•	 Does he know that I know he is a habitual bluffer? If he

knows I know this information, would he continue bluff

ing with nothing here? (Level 3)

We place a great deal of emphasis on these levels of reason

ing because they provide a framework from which to gen

erate a winning strategy, and more easily classify inference

tasks. Expert players are known to routinely perform up to

level 4 or 5 reasoning.

The emphasis of existing poker research has been on op

ponent modeling via neural nets (Davidson 1999), and sim

plifying minimax search for game theoretic optimum for

Hold’em games of two players(Billings et al. 2003) . Al

though the neural net strategy may be successful in detecting

patterns in one’s opponents bets, it is not clear how to extract

relevant information from these learned structures to gener

ate an appropriate strategy. For our system, we are looking

to build upon lower-level inferences to guide higher-level

strategic reasoning.

Also, one would not anticipate that a strategy optimized

for two-player(heads-up) play could be extensible to multi-

way action. Our learning strategy makes no assumptions

about the expected number of opponents.

Bayesian Nets

Bayesian Nets, also known as belief networks, provide a

powerful tool for making inferences under situation of un

certainty. They are a graphical method for representing

quantities of information in the form of connected graphs

and conditional probability distribution. Critical to the idea

is the use of Bayes’ Rule to update our beliefs about the state

of the world:

P (B|A)P (A)
P (A|B) = (1)

P (B)

The Bayesian Net essentially decouples the complex re

lationships between different variables(nodes) in the game

state by explicitly specifying the direct influence of vari

ables to other variables in the form of a parent-child con

nections. Any observations on variables goes into the model

as evidence, and the probability distributions of the graph

are updated accordingly. These observed nodes become ’in

stantiated’, and often times simplify the inference process

by jisjointing the graph into subnets of the full net.

One drawback to this approach is that a large train

ing database is needed to automatically learn the structure

and/or parameters for a Bayesian Net. For a particular prob

lem domain, this approach may not be possible, or the gen

eration or retrieval of this information may not be feasible.

Therefore, either of these steps can be substituted by hu

man design by experts. The benefit of using Bayesian Nets

for inference is that very limited information is needed to

perform inference. Also, since this is a acyclic graph rep

resentation, it is easy to represent the relationships between

various quantities as connections in this graph.

Another area of difficulty for Bayesian Nets lies in active

learning of the structure and parameters of a Bayesian Nets

containing large numbers of continuous nodes. Tradition

ally, this problem has been addressed through the strategic

discretization of continuous nodes into appropriate ranges

of values. We have taken this approach, generating a very

simple discretizaiton policy for our variables of interest.

For more recent advances in the treatment of continu

ous nodes for Bayesian Nets, see (Davies & Moore 2002)

(Davies 2002).

Requirements and Motivation

Training Database

One of the crucial elements of developing the inference tool

is to be able to provide the Bayesian Net with training data so

that it could learn the parameters associated with making the

inference of the villain’s hole cards. Without this data, the

Bayesian Net would have no way of knowing how to act and

the project would simply not be possible. The best source of

information for Texas Hold’em comes in the form of hand

history databases, which we will simply refer to as hand his

tories. Hand histories contain all of the information about

a game, including the players, the actions each player took,

the community cards, and ultimately what each player had

at showdown and how much they won. Stated simply, hand

histories are a log of a game. Hand histories are available

or can be generated through a variety of different sources,

including several sources online. In addition, the University

of Alberta has a freely available hand history database that

can be used to train artificially intelligent poker players or

inference agents.

However, each of the different sources comes with a dif

ferent format on how the data is stored. As a result, a design

tradeoff exists between taking the time to develop the most

general information extraction method possible versus the

complexity of implementation. On the one hand, creating a

general information extraction method allows us to use mul

tiple different hand history formats, thereby increasing the

corpus of data available to train the Bayesian Net. However,

unless the implementors have experience and are skilled in

the area of general information extraction, this could quickly

develop into a project all by itself.

Given these basic criteria, two options were considered

for implementation. The first method considered was to im

plement a system similar to (Freitag & McCallum 2000)

This paper was half of the subject matter we presented in

our advanced lecture given March 30 in class. In this paper,

Freitag and McCallum discuss the use of modified hidden

Markov model structures to extract key information from

human readable text. The HMM structure in their paper was

modified to fundamentally divide the nodes into target states

and non-target states. The target states are the nodes from

which the key information is extracted. The non-target states

are then subdivided into background states, prefix states, and

suffix states. With this modified version of the HMM, the

text must start in a background state, then transition into a

chain of prefixes. From the prefix chain, the text must go to a

target state, after which it must transition to a suffix and then

back to the background. In doing so, the independence of the

transitions for the HMM is no longer valid, but instead, the

HMM must follow certain predefined paths. Training sets

are selected and all the targets in the sets are labelled. The

best HMM structure is then learned using the Viterbi and

Baum-Welch algorithms.

The other type of information extraction method evalu

ated was to write a parser in a to-be-determined program

ming language for a specific type of hand history. Instead of

attempting to learn a general structure that extracts the infor

mation from a generic format, the parser would be written

to be format specific. If the format changed or a different

type of hand history was desired, then the parser would ei

ther have to be modified or a new parser would have to be

written.

Given the above information and the constraints of the

project, writing a parser for a specific type of hand history

format was selected. Several key factors caused this deci

sion. One such factor was that the method described by

Freitag and McCallum requires the creation of a separate

HMM for each variable to be extracted. As a result, each

variable contained in the hand history, such as action or the

players position, would require the learning of a separate

HMM. This would substantially increase the amount of time

necessary to extract the data. Additionally, not all of the

data is specifically stated in the hand history, the pot odds

a player faces (the amount of money in the pot compared

to the amount of money required for the player to call) can

be calculated based upon the information contained in the

hand history, but is never actually directly stated. This devel

opment meant that we would have to post-process the data

anyway, regardless of whether a parser was written or not. It

then seemed logical that if the information needed to be pro

cessed as it became available anyway, that the parsing could

be incorporated into the same file. The fact that we would

be limited to only one format type would not be detrimen

tal if we obtained enough hands of a certain format to allow

for the proper training. It turns out that this was indeed the

case. Furthermore, we have had a variety of experience writ

ing code to parse out files before while we had never before

attempted the system described by Freitag and McCallum.

As a result, we knew that the implementation of this sys

tem would end up being much harder than we anticipated

through the application of Murphy’s Law. Finally, since our

ultimate goal was to train a Bayesian Net, we understood

that it would behoove us to get the information required by

the Bayesian Net as soon as possible to allow for time to

tweak the Net. We felt that the parser would result in the

production of the data in the quickest manner.

Game State Representation

Another critical aspect of producing a high fidelity inference

tool for Hold’em is the representation used for the state of

the game. This concept was alluded to in the previous sec

tion. It is simply not enough to know a player’s actions as

produced by a hand history. Instead, all of a villain’s actions

must be considered in the context of the current state of a

game. Indeed, a bet when the villain is the first player to act

in a given round and he/she has a large amount of players be

hind them is quite different from a bet in late position when

everyone checked around to the villain. In the first scenario,

the villain bets knowing that he/she has the potential to be

called and or raised by numerous other players, putting them

at risk of investing much more money into the pot than just

their bet. The fact that they are still willing to bet demon

strates a much stronger hand than in the second scenario.

Here, the villain has the advantage of knowing how all of

the players in the game acted before he/she has to act. When

all the previous players acted passively, the villain has more

insurance that they have the best hand or that they will at

least not have to invest much more money. Given the impor

tance of the state of the game in interpreting how a player

acts, a design implementation be carefully designed to effi

ciently, but completely represent the state of the game. The

subsequent sections discuss some of the major issues asso

ciated with this design.

Two drastically different classes of designs were eval

uated for the representation of the game. The first was

a graphical method while the second was a code-based

method. Included as options in the graphical method are

HMMs and Stateflow Charts in Matlab while the code-based

method requires the state to be tracked in variables of code.

The graphical based method has the advantage of being

much more intuitive and easier for users to follow along with

the progress of a game. However, such methods tend to be

much slower in runtime. By contrast, the code-based method

is much more abstract, but has the advantage of being quite

fast for efficiently written code. This balance between speed

versus abstraction and complexity is discussed related to the

described methods below.

The first potential representation method for the state of

the game is to use HMMs to model the progression of a

hand. The opponent’s hole cards are used to define the ini

tial state of the model. The probability of receiving any two

hole cards is a simple application of entry level probability,

yielding a flat probability mass function (PMF) for all pos

sible hands.

However, the model can be simplified by bucketing the

possible hands. At the preflop stage of the game, it does

not matter if the opponent has an ace of hearts and an ace

of spades as opposed to an ace of diamonds and an ace of

clubs. Instead, what matters is that the opponent has a pair

of aces. Thus, in the preflop model, the suits of any pair

are irrelevant. Similarly, the particular suit can be ignored

for the remaining combinations. However, it is an impor

tant distinction in Hold’em if the opponent has hole cards

that are ”suited,” which means two cards of the same suit,

versus ”off-suited,” which means the two cards are of dif

ferent suits. Having suited cards provide the advantage of

increasing the chance of obtaining a flush by the end of the

game. As a result, the particular suit does not matter, but

whether the cards are suited or off-suited is an important

distinction to make. Thus, the initial bucketing tracks pairs,

suited non-pairs, and off-suited non-pairs, thereby substan

tially reducing the number of combinations. This in turn

limits the search space of the problem.

The probability of transitioning from any initial state to

any other set of cards is again just an application of entry

level probability and is known prior to any particular hand.

This probability depends only on the known cards in play

and the number of cards remaining from which to choose.

Thus, the structure and transitional probabilities associated

with the HMM are known before the game begins and never

vary from hand to hand.

It is important to note that though the structure does not

vary from hand to hand, it alters in shape throughout the

course of any given hand. As mentioned before, the particu

lar suits do not matter in the preflop stage of the game. How

ever, after the flop hits, the suits of the opponent’s hole cards

are needed so that an evaluation with the community cards

can be performed to see what type of poker hand he/she

could potentially have. While this leads to an increased

number of possible states, the number of states is reduced

by continuing to bucket the potential outcomes into poker

hands instead of modeling all the combinations that could

occur with the ultimate 7 cards.

Furthermore, the model of the opponent is updated as new

information about the state of the game becomes available.

One such new information source is the appearance of the

community cards. If a card shows up in the community

cards and only one deck is being used, as is the case for a

standard Hold’em game, then the card clearly cannot be one

of the opponent’s hole cards. As a result, any initial state

containing any of the community cards can be eliminated as

a possibility.

Another source of new information is the observations of

the opponent, which are his/her bets. Again, the opponent’s

actions can be bucketed to limit the search space. The op-

ponent’s actions will be categorized as passive, normal, and

aggressive.

As stated above, the structure and transitional probabili

ties associated with the HAM are known ahead of time and

do not change. However, what does change from opponent

to opponent, or even from hand to hand, is the observational

probability, or the likelihood of the opponent taking a certain

action at any state in a hand. The observations are the only

information present that are directly related to what a partic

ular opponent has for hole cards. As a result, the problem

of inferring an opponent’s hand is essentially one of condi

tional probability: given the current state of the game (the

community cards and the opponent observations), what is

the probability that the opponent has any particular pair of

hole cards. With HMMs, this then becomes a problem of

hypothesis testing. Each state can be evaluated for consis

tency with the opponent’s previous actions and the commu

nity cards that are available. If the actions seem inconsistent

with a particular hole card pair, then this pair is not a likely

candidate for the opponent’s cards.

The observational probabilities are clearly of vital impor

tance to the inference process. If this method were to be

selected, the Bayesian Nets would be used to populate the

observational probabilities. This could be done by, on a high

level, embedding a Bayesian Net into a particular state to de

termine the probability of an action given a number of dis

crete and continuous variables identified as important. The

Net could then output the probability of seeing any particu

lar observation for a given state.

A very similar method is to use Matlab’s Stateflow charts

to control the flow of the game. Many of the same devel

opment discussed above applies directly to this method. For

instance, the hole cards would form the initial state and then

transitions would occur based upon the cards shown in the

community cards. These transitions would have predefined

probabilities. The reason that this method is distinguished is

that it is not just graphically-based, but is in fact graphical

in implementation as well. The user could follow the flow

of the game care of a GUI. By contrast, the HMM would be

based on the graph, but would still be implemented in code,

requiring an additional GUI to be written in order to achieve

actual visualization.

The final method evaluated was a code-based model. In

this method, the state of the game is tracked solely through

variables stored in the code. If a player bets, the pot is

increased, their active money is increased, the amount of

money required to call is increased, the number of active

players is incremented, and so forth. This method allows

the greatest flexibility in that any change that needed to be

made to the model could theoretically be added with as few

as a couple of lines of code. However, this method has the

disadvantage of being the most abstract, requiring users to

interact over a console instead of a GUI. However, a final

major advantage is that the code-based method can easily

incorporate code written previously written by other people

that has been made freely available to the public. Examples

of such code include hand evaluators. Numerous poker hand

evaluators can be downloaded from the internet. All of these

tools allow the user to specify known cards with the result

being the best possible hand available from the cards. These

can then be modified to enumerate the different possibilities

a villain could have, which would be quite useful in the hy

pothesis testing of the inference.

The code-based model was selected as the implementa

tion method for the representation of the state of the game.

Several factors went into this selection. Perhaps the most

dominant reason is that the two graphical methods suffer

from the curse of dimensionality. Even if the aforemen

tioned bucketing is performed preflop and then subsequent

hands are bucketed based on poker hand type, the number of

states is tremendously high. Furthermore, bucketing causes

the model to be inherently less accurate than if bucketing

was not employed. It was deemed infeasible to physically

draw all the states in Matlab, let alone connect them with

the necessary logic. Furthermore, the code-based method

ties in well with the specific parser choice for information

extraction. With the added benefit of employing hand eval

uators at our discretion, the code-based model was a clear

choice.

Statistical Inference

In order to perform inference tasks in Hold’em with

Bayesian Nets, we needed a method for generating the

nodes, structure and parameters of these graphical models.

The choice of variables of interest must be done by an ex

pert, since the game transcripts do not have any raw statis

tical data from which to define the nodes of our Bayesian

Net. For example, one variable that factors into human play

is the notion of pot odds. This variable is a ratio calcu

lated by dividing the total pot size by the amount a player

must currently put forward to play. Therefore, we needed

a concise selection of variables from domain knowledge to

be incorporated into a representation. For the topology, we

also had the choice of learning or specifying the topology.

Since the variable definitions nearly capture the notion of

a correlation with other variables, using expert knowledge

here would be nearly trivial. For example, hand-strength

and actual hole cards are connected, while hole cards and

pot odds are not. However, there are a number of packages

for learning the structure of Bayesian Nets, thus providing

an attractive and more optimal alternative to expert knowl

edge. When increasing the number of variables of interest

it appears that learning the structure may be more desirable,

especially if there is a high density of possible connections.

Most of these structure learning algorithms involve the use

of search(i.e. hill climbing) for the best structure, given a

scoring metric. Furthermore, the parameters in the form of

Conditional Probability Distributions, of a given structure

must also be specified. Again the choice must be made be

tween expert knowledge and statistical learning. Because

the estimation of these parameters involves a great deal of

calculation, this part of the project seemed more suitable

for an algorithm. Finally, given the fully specified Bayes

Net, one must be able to generate inferences given some ob

served data. To perform this action, a number ’inference en

gines’ are available. These inference engines are useful for

different problem specifications, since the choice of engine

involves trading off a number of factors including speed, ac

curacy, and restrictions on node types.

Implementation

This section of the paper describes the design and imple

mentation of a poker inference tool, and our evaluation of

the tradeoffs associated with each decision made during the

process.

Database Generation

With the hand history-specific parser and code-based model

selected for the design, a critical decision needed to be made

regarding which programming language to use to implement

the design. Given that this was deemed to be Brian’s section

of the project, the real options for programming languages

were C/C++ (heretofore just referred to as C), Matlab, or

Python, though his experience with Python was extremely

limited. Brian decided to implement the database generation

code in Python with time intensive tasks to be done in C.

A number of factors went into this decision. The con

densed timeline of the project eliminated C from contention.

While C is the language Brian is probably most comfortable

with, writing a parser in a language as low level as C would

have taken substantially longer than writing in a higher level

language such as Python. As stated earlier, the database was

deemed to be important to produce as quickly as possible

so that the Bayesian Net could be tweaked for a maximum

amount of time. Producing a quick parser in C seemed im

practical given the scope of the parser required, especially

if a famous hidden C bug appeared. Plus, since the project

had no realtime requirement for the data, there was no need

to suffer through the pains of C just to get the performance

enhancement.

The time savings of Python was not just anticipated due

to the high level nature of the language, but also through

the option of using regular expressions to aid in the parsing.

While Brian had little to no experience with either Python

or regular expressions, he decided that it would be faster to

teach himself Python and regular expressions than to write a

parser in C. This was based on his experience with writing a

C parser while interning at Lockheed Martin two summers

ago. This gamble, which probably admittedly took a fair

amount of hubris to make, ended up paying off in the end.

As for Matlab, we decided that we did not want everything

to be limited to having a version of Matlab installed on the

computer. Instead, we wanted as generic a program as possi

ble. Plus, the benefits of Matlab code similarly be achieved

in Python.

The best way to describe the high-level detail of how the

created is to walk through an example of parsing a sample

hand history for one particular game of Hold’em. A sam

ple hand history file is showed below. It will be referenced

throughout the next section.

#Game No : 1597832386

***** Hand History for Game 1597832386 *****

$3/$6 Hold’em - Tuesday, February 15, 23:32

Table Table 11280 (Real Money)

Zestaa checks.

AA_Killer checks.

billpokerwon checks.

nychig bets [$6].

Zestaa calls [$6].

AA_Killer folds.

billpokerwon calls [$6].

** Dealing River ** [8h]

Zestaa checks.

billpokerwon checks.

nychig is all-In [$5.5]

Zestaa folds.

Seat 8 is the button Total num of players : 10
billpokerwon calls [$5.5].

Seat 1: AA_Killer ($131.5)

Seat 2: T_Furgeson ($229)

Seat 3: Kasugai ($145.5)

Seat 4: billpokerwon ($100)

Seat 5: Tallpower ($259.75)

Seat 7: nychig ($17.5)

Seat 8: Grinning_Dog ($101)

Seat 9: thirddan1 ($150)

Seat 10: Zestaa ($154)

Seat 6: teraldino ($150)

Zestaa posts small blind [$1].

AA_Killer posts big blind [$3].

** Dealing down cards **

T_Furgeson folds.

Kasugai folds.

billpokerwon calls [$3].

Tallpower folds.

nychig calls [$3].

Grinning_Dog folds.

Zestaa calls [$2].

AA_Killer checks.

** Dealing Flop ** [6h, 4d, 3h]

Zestaa bets [$3].

AA_Killer calls [$3].

billpokerwon calls [$3].

nychig calls [$3].

** Dealing Turn ** [9c]

billpokerwon shows [Ah, Qc] high card ace.

nychig doesn’t show [Jc, Qs] high card queen.

billpokerwon wins $50.5 from the main pot

with high card ace.

The first step in encoding a hand was to see if it contained

any useful information to the problem. Since Hold’em is in

herently a game of hidden information, unless the game goes

to showdown, the villain’s cards remain hidden. As a result,

in order for a given hand history to be of use in providing

information from which learning can be performed, it must

be of a game that either went to showdown or had a player

present whose cards are available in the history. This ex

ample was selected because two players went to showdown.

This can be ascertained by searching the hand history for

the word ”show” or the string ”doesn’t show.” The reason

that ”doesn’t show” is an option here is that in this particu

lar game, if a player goes to showdown and loses, they can

select to not graphically display their cards to the rest of the

table. The information still obviously is placed in the hand

history, though. Since these strings were matched, the game

is of use to us and parsing continues.

Next, the players are populated in a list based upon the

seat order. This is clearly seen in the hand history as ”Seat

x: playername.” While doing this, the player who is on the

button (the player that is last to act) is read in and stored.

The blinds are also collected and the pot amount is updated

to reflect this.

At the beginning of every betting round, the position is

established for each player. In the non-preflop rounds, the

player’s position is simply the order in which they act. This

can be most easily seen by looking at the betting round as

sociated with the flop. In this round, Zestaa has a position

of 1, AA Killer has a position of 2, billpokerwon has a posi

tion of 3, and nychig has a position of 4. This information is

updated before each betting round. The only difference with

preflop is that the player posting the small blind is said to be

in position 1 and the player posting big blind is in position

2.

Finally, the actual action is parsed. It is important to note

that only the players who show their cards have their infor

mation written to the database, but all the actions affect the

current state of the game. Instead of going through the en

tire hand, only a representative sample of the preflop will be

demonstrated. The variables being stored for the state of the

game include pot size, number of active players, amount of

money required to call, and board cards. Then, information

for each player is stored, including if they are active, their

position, how much money they contributed to the pot in the

current round, and, if they show down in the end, their hole

cards.

Before the betting starts, the pot has a value of 4.00, which

is the value of the blinds and the amount to call is 3.00,

which is the value of the big blind. Also, the board cards

are empty, the number of players equals 8 (though 10 are at

the table, only 8 are actually playing, which you can tell be

looking at who acts),

To start off the action T Furgeson folds. As a result, the

active variable is set to false and the number of active players

is decremented. All the other variables remain constant. The

same process is followed when Kasugai folds next. Next,

billpokerwon calls for $3. The number of active players

stays the same this time, but the pot size and amount of ac

tive money for billpokerwon is increased according to the

value of the bet.

However, billpokerwon is one of the two players who ul

timately goes to show down. As a result, his current infor

mation is written to the database before it is updated. This

is to save the state of the game so that the Bayesian Net can

learn the necessary parameters to perform a future inference.

All the variables of interest as specified in the Bayesian Net

are then written to a database file, with tabs delimiting the

fields. In order to get the required hand score and hand score

by river values needed by the Bayesian Net, a hand evalua

tor written in C is called with billpokerwon’s known cards

of Ah Qc used as arguments.

The same process is repeated for all the subsequent ac

tions in the game. As stated earlier, every action updates

the appropriate variables in the state of the game (a raise in

creases the pot, active money of the player, and amount to

call while the number of active players remains the same)

while only the state of players who eventually show down

are written to the database.

Learning with Matlab Bayenet Toolbox

We had a number of choices for representation of the struc

ture and parameters of our Bayesian Net, and the algorithms

used to perform inference on that net. Our primary choice

was to use pre-existing software packages to do the learn

ing and inference, or to write our own. Although having the

freedom of a customized Bayes Net implementation was at

tractive, for the goals of the project we decided to leverage

existing work. However, even within the space of available

packages, we had to narrow down our choices. In look

ing at the features of each of our choices, we narrowed it

to the Matlab Bayes Net toolbox, and the CMU AutonLab

Bayes Net Learner (Andrew Moore), each freely available

and portable to our development environment. Between the

two, we chose the Matlab option because of the extensibil

ity of the representation, and the overall user-friendliness of

coding in Matlab. However, although the interface and rep

resentation was simple, this package provided little docu

mentation and support for problems. Therefore, the process

of learning how to properly specify and/or learn a Bayesian

Net structure and parameters involved a time-consuming

learning curve. In hindsight, it may have been better to im

Figure 1: Expert Bayes Net Structure for Hold’em inference

plement the Bayes Net Learner from scratch, but that may

have been a project all in its own.

Once we chose the Bayes Net Learner, we used expert

knowledge to specify the parameters of interest. Based upon

knowledge of the game, we chose pot odds, position, num

ber of players in the hand, actual action, hand strength, hand

strength by river(potential). These variables needed to be

extracted from the transcripts of hands and incorporated into

the database generation to provide this step with the correct

data.

In addition, we needed to specify the topology of our vari

ables of interest. Our topology choice, shown in Figure 1

captures what we feel is a range for the top four most likely

influencing variables on an opponents actions. Although this

choice is a simplification of the overall number of variables,

it demonstrates the ability for the Bayes Net to decouple

these complex relationships into parent-child connections,

and then subsequently learn the parameters of the Condi

tional Probability Densities using Maximum Likelihood Es

timation.

Using the 476,468 database entries generated during our

training set extraction, we ran Matlab Bayes Net toolbox se

quential Bayesian parameter updating algorithm. On a Win

dows Pentium 4 3.6GHz system with 2GB of RAM, the

learning takes nearly 30 seconds. Considering the size of

this database, these performance metrics are acceptable.

Component Integration

The different components of the project were all brought to

gether through the tremendous coding-glue that is Python.

The database generation was done through the use of two

python scripts, dbgen.py and driverDBgen.py. dbgen.py per

formed the generation of the database information for any

given hand history file while driverDBgen.py acted as a shell

script that called dbgen.py repeatedly for all available hand

histories. Inside dbgen.py, the C hand evaluator and other

functions were called as necessary.

The learning and evaluation of the Bayesian Net were also

controlled through the use of Python. First the test cases

were generated by a script entitled testgen.py, which was

driven by driverTestsGen.py. Another script was added to

the repertoire in the form of driverInference.py. This is truly

the most overachieving script. It kicks off driverTestGen.py

in order to generate all of the test cases to evaluate. It then

calls the Matlab executable of the Bayesian Net to perform

the inference based upon the supplied evidence. It then takes

the guesses supplied by Matlab and writes the results along

with the actual cards to a file entitled results.txt.

Evaluation

To test the accuracy of our trained Bayesian Net, we ran 20

randomly selected tests witheld from learning as a validation

set. These 20 tests were generated using driverInference.py

script and passed to our Matlab executable. For each test,

this executable generates a Probability Mass Function across

our distribution of a handstrength variable. Recall that our

handstrength variable is discretized into 10 buckets, so at

best our current implementation will make a correct infer

ence to within a specific decile of hands. We use this PMF

to make an estimate of actual hole cards by enumerating a

weighted contribution from the two deciles corresponding

to highest distribution of probability mass. We weight the

contributions such that that 75

On these examples, our inference mechanism overesti

mated the value of an opponent’s holding on all but two tri

als. On the successful runs, our system accurately predicted

the final showdown hand of a particular opponent to within

the top 10 possibilities. Consdering the fact that there are

1326 possible preflop combinations to guess from, we con

{ / / }

{ }

{ }

{ }

{ }

{ }

{ }

Variable Description Discretized Domain

action action taken by player fold, check call, bet raise

pot odds size of bet:size of pot [0-5),[5-10), ...,[20-25), inf

position player position wrt dealer blinds, early, middle, late

num players number of active players shorthanded, mid, large, full

hand value current evaluation of hand [0-10), [10-20), ..., [90-100)

hand riverval hand potential by river [0-10), [10-20), ..., [90-100)

hole cards specif. of hole cards 0,1,2..1325

Table 1: Discretization policy for variables.

sider these results promising in that we may begin to see

useful results from only a few improvements to the system.

Conclusions and Future Work

In conclusion, we implemented a inference tool for Texas

Hold’em Poker that produced a top 20 list of possible hole

card values for an opponent given the evidence of the vil-

lain’s actions. This inference was produced through the use

of a Bayesian Net that was implemented using a freely avail

able Bayesian Net toolbox for Matlab. The results produced

by the inference did not yield a high rate of accuracy.

The lack of accuracy of the predictions should not be in

terpreted as a failure of this method for this particular prob

lem. Given the condensed time frame of the assignment, ac

curacy was purposely sacrificed to accommodate the neces

sarily small scope of the project. We knew that a 1-semester

development cycle would result in this low accuracy.

Several modifications to the methods could result in dras

tically improved results and the authors fully intend to con

tinue this work into the summer and beyond. One such im

provement would be to use a much more complex Bayesian

Net. The design of this Net was actually completed back in

early April, but we decided its implementation would take

longer than the given time frame. It was at this point that we

simplified the Net to the version presented in this paper. Dra

matic improvements could also be seen by employing either

a dynamic Bayesian Net or an HMM in conjunction with the

Bayesian Net to track the changes in information throughout

the game. Doing show would allow us to alter the parame

ters of the Bayesian Net depending on the stage of the game.

This is important because the variables of interest have the

potential to change drastically throughout the game. For in

stance, 7:1 pot odds preflop is drastically different than 7:1

pot odds on the river. To simplify the implementation, the

current model has no sense of altering these parameters. It

also has no sense of memory. Said differently, it does not

perform the hypothesis testing referred to earlier over an en

tire path of actions, but instead just gives a guess based upon

a single action. Again, this was a conscious choice to reduce

the scope of the problem, but in doing so, accuracy was sac

rificed. Finally, these and other changes will be made in an

attempt to steer the project in the direction of achieving a

Texas Hold’em strategy for the program. The goal of this

is to ultimately have a human competition Texas Hold’em

player.

References

Billings, D.; Burch, N.; Davidson, A.; Holte, R.; Schaeffer,

J.; Schauenberg, T.; and Szafron, D. 2003. Approximating

game-theoretic optimal strategies for full-scale poker. In

Gottlob, G., and Walsh, T., eds., IJCAI, 661–668. Morgan

Kaufmann.

Davidson, A. 1999. Using artifical neural net

works to model opponents in texas hold’em.

http://spaz.ca/aaron/poker/nnpoker.pdf.

Davies, S., and Moore, A. 2002. Interpolating conditional

density trees. In Conference on Uncertainty in Artificial

Intelligence.

Davies, S. 2002. Fast Factored Density Estimation and

Compression with Bayesian Networks. Ph.D. Dissertation,

Carnegie Mellon University.

Freitag, D., and McCallum, A. 2000. Information extrac

tion with HMM structures learned by stochastic optimiza

tion. In AAAI/IAAI, 584–589.

Koza, J. R.; Kean, M. A.; Streeter, M. J.; Mydlowec,

W.; Yu, J.; and Lanza, G. 2003. Genetic Pro

gramming IV:Routine Human-Competitive Machine Intel

ligence. Kluwer Academic Publishers.

