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An Empirical Investigation of Mutation Parameters and Their 
Effects on Evolutionary Convergence of a Chess Evaluation 

Function 
 
 

Motivation 
 
 The intriguing and strategically profound game of chess has been a favorite 
benchmark for artificial intelligence enthusiasts almost since the inception of the field.  
One of the founding fathers of computer science, Alan Turing, in 1945 was responsible 
for first proposing that a computer might be able to play chess.  This great visionary is 
also the man credited with implementing the first chess-playing program just five years 
later.  In 1957, the first full-fledged chess-playing algorithm was implemented here at 
MIT by Alex Bernstein on an IBM 704 computer.  It required 8 minutes to complete a 4-
ply search.   
 Even in those early golden years of our field, it was recognized that the game of 
chess presented an exceptionally poignant demonstration of computing capabilities.  
Chess had long been heralded as the “thinking man’s” game, and what better way to 
prove that a computer could “think” than by defeating a human player.  Strategy, tactics, 
and cognition all seemed to be required of an intelligent chess player.  In addition, early 
AI programmers likely recognized that chess actually provided a relatively simple 
problem to solve in comparison to the public image benefits that could be gained through 
its solution.  Chess is a deterministic, perfect information game with no hidden states and 
no randomness to further increase the size of the search space.  It was quickly recognized 
that brute force techniques like the mini-max and alpha-beta searches could, with enough 
computing power behind them, eventually overtake most amateur players and even begin 
to encroach upon the higher level players.  With the advent of chess-specialized 
processors, incredible amounts of parallelism, unprecedented assistance from former 
chess champions, and the immense funding power of IBM, the behemoth Deep Blue was 
finally able to defeat reigning world champion Gary Kasparov in a highly-publicized, 
ridiculously over-interpreted exhibition match.   

Having logged this single data point, the artificial intelligence community sighed 
contentedly, patted itself on the back, and seemingly decided that chess was a solved 
problem.  Publications regarding chess have declined steadily in recent years, and very 
little research is still focused on ACTUALLY creating a computer that could learn to play 
chess.  Of course, if you have a chess master instruct the computer in the best way to beat 
a particular opponent and if you throw enough computing power at a fallible human, 
eventually you will get lucky.  But is chess really solved?  More importantly to the 
project at hand, should we cease to use chess as a test-bed for artificial intelligence 



algorithms just because Kasparov lost one match?  (or rather because IBM paid him to 
throw the match?  You will never convince us otherwise by the way! ☺) 

We think not.  The original reasons for studying chess still remain.  Chess is still a 
relatively simple model of a deterministic, perfect information environment.  Many 
currently active fronts of research including Bayesian inference, cognitive decision-
making, and, our particular topic of interest, evolutionary algorithms can readily be 
applied to creating better chess-playing algorithms and can thus be easily benchmarked 
and powerfully demonstrated.  This is the motivation for our current project.  We hope to 
remind people of the golden days of artificial intelligence, when anything was possible, 
progress was rapid, and computer science could capture the public’s imagination.  After 
all, when Turing proposed his famous test, putting a man on the moon was also just a 
dream. 

 
 

Project Objectives 
 

1. Implement a chess-playing program which can be played human vs. human, 
computer vs. human, and computer vs. computer.   

2. Re-implement the chess evaluation function evolution algorithm with 
population dynamics published by [1].   

3. Conduct a study of the mutation parameters used by [1] in an attempt to 
discover the dependency of the evolution’s convergence on a subset of these 
parameters.   

4. Suggest improvements to the mutation parameters used in [1] to make that 
algorithm more efficient and/or robust. 

 
 

Technical Introduction 
 
 The focus of our work was primarily the re-implementation of the evolutionary 
algorithm for evolving chess evaluation functions using population dynamics proposed 
and demonstrated by [1].  This algorithm first proceeded by defining a relatively simple 
evaluation function for a computer chess player given by a weighted combination of 
seven factors: 
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where:  N[6] = { N° pawns, N° knights, N° bishops, N° rooks, N° queens,  

   N° kings, N° legal moves} 
  W[6] = { weightpawn, weightknights, weightbishop, weightrook,  
      weightqueen, weightking, weightlegal move} } 
 



The parameter to be evolved is, of course, the weight vector W.   
 The original algorithm then created an initial population of 50 alpha-beta chess-
players each with the above evaluation function and its own random W vector.  The 
weights were initially uniformly selected from the range [0,12].  The evolution then 
began by allowing chess players to compete against one another in a particular fashion 
which ensured that stronger players were allowed to play more often than weak ones.  
Each match consisted of two games with players taking turns as white or black.  More 
games were not required since the algorithms are entirely deterministic and the outcome 
would therefore never change.  After each match, if there was a clear winner, the loser 
was removed from the population.  In its place, a mutated copy of the winner would be 
created.  The winner might also be mutated in place.  Mutations took place by adding or 
subtracting a scaled number onto each element of a population member’s weight vector.  
Thus:   
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Player wins both games:  Expel loser, duplicate winner and mutate one copy by  
R = 0 and the other copy by R = 2. 

Player wins one game and draws the other:  Expel loser, duplicate winner and  
mutate one copy by R = .2 and the other copy R = 1. 

Players draw:  Both players are retained and mutated by R = .5. 
 
 The astute reader will immediately note that the R values above seem rather ad 
hoc, and indeed Kendall and Whitwell note that the R values were “selected based on 
initial testing” and not by any theoretical or rigorous means [1].  It was therefore our 
purpose in this project to empirically discover evidence for or against the mutation 
parameter choices chosen by Kendall and Whitwell.  Our empirical experiments 
demonstrate that in fact this evolutionary algorithm is extremely sensitive to the mutation 
parameters chosen.  If the parameters are chosen too large, the algorithm may frequently 
become unstable and never converge to a single value.  If the parameters are chosen too 
small, the algorithm may converge quickly, but to a value that is less than optimal.  In the 
middle range, the parameters may be tuned to increase or decrease the convergence rate 
of the algorithm toward the optimal solution.  However, if no knowledge of the correct 
optimal solution exists, we show that evolutionary algorithms may in fact be very 
difficult or impossible to properly tune.   
 
 

Previous Work 
 
 In choosing to study the effects of mutation parameters on evolution convergence, 
we first needed to research the literature and see what studies, if any, had been conducted 
along these same lines.  The number of papers on general evolutionary algorithms is 
astounding [5][7][8], it having become a veritable buzzword in the late nineties.  
However, most of these papers focus on solitary attempts to create an evolutionary 



algorithm for a particular field.  Many fewer of the papers in the literature are actually 
detailed theoretical analyses of how an evolutionary algorithm should be created [6][9] 
and practically none provide detailed evidence as to why they chose their mutation 
parameters as they did.  The reason for this gaping lack can probably be best summed up 
by a passage from [5]:  “Probably the tuning of the GA [Genetic Algorithm] parameters 
are likely to accelerate the convergence [of the evolution].  Unfortunately, the tuning is 
rather difficult, since each GA run requires excessive computational time.”  It seems that 
authors have been generally much too concerned with turning out a paper containing a 
neat application in as short a time as possible and much less eager to invest the 
admittedly exorbitant amount of time and computational resources required to investigate 
this question.  After this rather dismaying survey of the literature, we decided that our 
investigation would therefore be quite beneficial to the field.  Unfortunately, we too were 
limited by the computational time requirements requisite of this ambitious undertaking.   
 
 

The Chess-Playing Algorithm In Detail 
 

Alpha-Beta Search as Branch and Bound:  The Alpha-Beta search which is the 
core of the adversarial search in cognitive game theory can be seen as two simple Branch 
and Bound algorithms in parallel.  Branch and Bound is used to find the minimum 
assignment to a set of variables given a list of soft constraints (all with positive penalty). 
Similarly Alpha-Beta is used to find the branch in the game tree which corresponds to the 
optimum move for the computer applying the minimax rule and using the chess rules as 
constraints. The two algorithms are obviously quiet different, but the pruning rule is the 
same. 

In Branch and Bound we can prune a subtree if the value of the current 
assignment at the root of the subtree is already greater than the best solution found so far 
for the complete set of variables. We can apply such a method because the constraints 
only have a deleterious impact on the value of the assignment (there is no negative 
penalty). Therefore, when considering a subset of variables, we know that if we already 
found a better solution using the complete set of variables, there is no reason to continue 
searching the subtree. At best the new constraints will be satisfied with a cost of zero but 
the final value will still be greater than the intermediary value and worse than the 
optimum. 

At first glance, it is not obvious how this relates to Alpha-Beta since the minimax 
algorithm uses positive as well as negative penalties, depending on which player is 
playing, and there is no constraint defined at a given node. First with Alpha-Beta we can 
only evaluate the nodes starting from the leaves and back up the values in the search tree. 
For each MIN node, we return the minimum of the value of the children and for each 
MAX node we return the maximum of the values of the children. From this guideline we 
can easily define the Alpha-Beta pruning rule. Imagine that for a given MAX node we 
found a child worth 10. If elsewhere in the subtree starting from this node we find 
another MAX node with a worse value of 6, there is no need to continue expanding the 
siblings of this sub-node. We can then prune the parent of this node. Indeed, whatever the 
values of the siblings are, the parent node (which is a MIN node) will always be able to 



return this 6 to the initial node and therefore the MAX node root of the subtree will never 
choose this move since it can have a 10 with another move. 

In the alpha-beta procedure we define two parameters from which we'll be able to 
prune the game tree according to the Branch and Bound procedure: 

• Alpha (highest values seen so far on max level) 
• Beta (lowest value seen so far on min level).  

Alpha and Beta are local to any subtree. The idea of the Alpha-Beta pruning is that if we 
find a value which is smaller than the current Alpha (for MAX) or greater than the 
current Beta (for MIN), we don't have to expand any other sibling since we already found 
a better solution elsewhere. Hence we can see the Alpha-Beta search as two Branch and 
Bounds search in parallel, one for each player MIN and MAX. 

The MIN level is exactly the same as a normal Branch and Bound: we want to 
minimize the value of the node which is exactly the same as minimizing the value of the 
tuple assignment for B&B. As far as pruning, we don't expand any other sibling for a 
node whose evaluation function is greater than Beta (the minimum board evaluation seen 
so far on the subtree restricted to MIN nodes). Again this is the same as pruning a node if 
the value of the given assignment of the subset of variable is greater than the best solution 
seen so far. 

 
Figure 1: Example of Beta-pruning (exactly similar to B&B) 

 
 

The MAX level is the inverse of the normal Branch and Bound since we want to 
maximize the value of the nodes It can be seen as a B&B. But the idea is still the same 
and the procedure similar. As far as pruning, for a MAX node, want don't expand any 
other siblings for a node whose value is smaller than Alpha, the maximum board 
evaluation seen so far on the MAX levels of the subtree. 
 

 
Figure 2: Example of Alpha-pruning (inverse of B&B) 
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Finally, the Alpha-Beta search can be seen as two B&B searches in parallel, one 
for the MAX nodes and one for the MIN nodes. To make the search more efficient, only 
the “interesting” nodes are searched, and similarly to B&B, we prune all the nodes that 
cannot possibly influence the final decision. The pruning rule is however slightly 
different because whereas for B&B we have a value for a node before searching any child 
(just by evaluating the set of constraints defined on the current tuple) for Alpha-Beta we 
have to search down to the maximum depth of the search in order to apply the evaluation 
function and return a value for the node. Therefore, instead of simply pruning the node, in 
Alpha-Beta the gain is to cancel the search of the other siblings. It can be compared to 
pruning the parent node (MAX node just above for MIN or MIN node just above for 
MAX). 
 
Adaptations to Alpha-Beta:  The alpha-beta algorithm alone is a very powerful tool for 
evaluating possible moves in a game tree.  However, for many applications it still 
evaluates more positions than is necessary or feasible if a deep-searching algorithm is 
required.  As such, the literature has proposed numerous improvements to the basic 
search algorithm over the years.  The three improvements implemented by Kendall and 
Whitwell, and later by us, are discussed below. 
 

Transposition Tables:  In many cases, a combination of two or more 
moves may be performed in different orderings but arrive at the same final board 
state.  In such a case, Figure 3 illustrates that the naïve alpha-beta algorithm will 
reach this same board state, not recognize that it has seen the position before, and 
be forced to continue searching deeper in the tree even though it has already 
searched this subtree before.  If the search is able to instead save to memory a 
table of board positions previously explored and evaluated, the wasted 
computation of expanding the subtree multiple times can be avoided.     

 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 3:  (a)  Naïve 
alpha-beta.  The search 
assigns a value of 35 to 
the square node after 
searching the entire 
subtree.  When the 
search again sees 

square, it must re-
explore the subtree.  (b)  

Transposition tables 
enabled.  The search 

stores the value 35 for 
square node in 

memory.  When it 
again sees square node, 

it can immediately 
assign its value with no 

further search. 



 
Figure 4:  The structure of our transposition table trees.  A tree has a depth of 65, one level 

for each square on the chessboard plus a root node.  At each level there are 13 branches 
corresponding to each of the possible pieces (or lack thereof) that could be present in that 

square.   
 
The obvious difficulty with this approach is that it can become exceptionally 
memory-intensive.  A memory and time efficient means of storing the previously 
seen board positions and assessing whether or not a previous board has already 
been evaluated is essential.  To accomplish this task, we therefore applied the 
well-known computer science axiom:  “trees are good.” 

In our algorithm, we construct for each player two initial arrays of 
“transpo_nodes,” one for the min function and the other for the max since who is 
currently moving makes a difference.  These arrays each have a constant size of 
500000, a size chosen in order to keep the total memory usage of the algorithm 
within 256 MB of RAM and so be executable on practically any modern personal 
computer.  When this array has been completely filled up, we delete the entire 
transposition tree and begin again with a fresh tree.  While this may seem like we 
are throwing away valuable information, what must be realized is that a board that 
was stored on move 1 of the algorithm which contained all 32 pieces becomes 
entirely useless in a few moves when the first capture is made.  Thus, in 
periodically cleaning out the tree, we are actually mostly just disposing of useless 
flotsam. 

The general construction of our transposition table trees is shown in 
Figure 4.  A tree is 65 levels deep, one level for each square on the board plus a 
root node level.  The tree has a branching factor of 13.  This corresponds to one 
branch for each possible state of a square.  That is, branch one corresponds to a 
black pawn being in the current square, branch two corresponds to a black rook, 
branch seven corresponds to an empty square, branch eight to a white pawn, 
branch 13 to a white king, etc. 

This construction allows for efficient, constant time searching of the tree 
to determine whether a previous board configuration is stored.  The algorithm 
starts at the first level of the tree and examines the first square of the board under 
consideration.  For concreteness, let us say that this square contains a black rook.  
If a board or boards containing a black rook in the first square has previously been 
explored, a node will exist below the first branch of the tree’s root.  The search 
will then proceed to the second square.  Let us say that in the second square, the 



current board contains a white king.  If the transposition table had already seen a 
board that contained a black rook in square 1 and a white king in square 2, a child 
node would exist beneath the thirteenth branch of the current node.  In this way, 
the search can continue down the tree, taking at most 64 steps until it has 
determined that all of the squares of the current board do or do not match a board 
previously seen.  If the board does match, the value of the previously explored 
subtree for the given board is returned.  If the board does not match after some 
depth, then the necessary nodes are added to the transposition tree to signify that 
such a board has now been seen and the alpha-beta search is forced to continue. 

However one has to be cautious when applying this process because we 
don’t want to limit the search depth by applying the transposition tables. When 
checking if a board configuration has already been seen in the table, it may be that 
it has been seen but at a high depth in the search. Then the value associated in the 
table may correspond to a search only one or two plies ahead from this board 
configuration. In such a case if we find a board that matches this board in the 
table we don’t want to return the value in the table if the planned depth of the 
search for the new board is greater than the search of the board in the table. To 
solve this problem, we recorded in the transposition tables the depth of the search 
that led to the value of the boards stored. Then a board that matches a board in the 
table is only pruned if the planned search depth is smaller (or equal) than the one 
recorded is the table. 

Our approach to transposition trees was able to achieve a constant memory 
usage, a constant search time for previously seen boards, and a constant time 
update to the table given new information.  We are quite proud of that approach 
which we developed without any help from the literature.   

  
 Quiescent Search:  The second improvement on simple alpha-beta search 
that we implemented for our chess player is known as quiescent search.  The 
principle behind this search is an attempt to eliminate what is known as the search 
horizon. 
 The weakness of naive evaluation functions – like the one used in the 
Kendall and Whitwell paper and therefore in our chess player – is that they only 
evaluate static board configurations.  They cannot foresee if the next move is a 
capture that will totally change the “value” of the board. This is especially true if 
we stop the search at a fixed depth. The idea of “quiescent search” is to use a 
variable search depth and only apply the evaluation function to stable board 
configurations. 
 Imagine that we have a board in which black’s queen and white’s pawn 
can attack the same square which is currently occupied by white’s bishop.  In this 
position, black’s best next move would be to capture white’s bishop with his 
queen.  This move would make our heuristic evaluation function favor black if we 
stopped at only one level deeper.  However, if we search two moves deep, we will 
see that black’s queen having taken white’s bishop would in turn be captured by 
white’s pawn.  The bishop capture is in fact then a very bad move for black.  
However, black is simply unable to see past its depth horizon of one, and so does 
not realize that it has moved its queen into jeopardy.  This problem stems from the 



fact that our heuristic function does not adequately take into account the true 
future strategic value of a current board, but is rather only a rough estimate of this 
position based purely on the events which have happened in the past.   
 One solution to this problem then would be to incorporate more future 
information into one’s evaluation function.  This approach has been avidly 
pursued  [10][12].  For our present purposes, however, the structure of our 
evaluation function has been presupposed as similar to Kendall and Whitwell’s, 
and we must therefore find another method for dealing with this finite horizon 
search issue.  
 The quiescent search methodology is a partial solution to this problem.  
Basically, when the alpha-beta search reaches its “maximum depth” it does not 
immediately cease searching in all cases.  It first examines the current board 
position to see if the board configuration at the next level is relatively stable.  In 
our algorithm, this is done by querying whether or not there are any capture or 
promotion moves available at the next level of the search tree.  If the alpha-beta 
search finds that the board configuration is not stable at this level, then it proceeds 
to search an extra level of depth.  As long as there are more capture moves 
available, the search will continue, theoretically indefinitely.  This would ensure 
that when the search has reached a leaf, the heuristic function at the leaf is 
relatively stable and therefore is an adequate representation of the current board 
position.  Unfortunately, in a practical sense, we cannot allow the alpha-beta to 
continue indefinitely searching for all captures as that would require far too much 
computational time.  Instead, we allow the quiescent search to proceed to a level 
between two and three times as deep as the initial “maximum” depth level.  If in 
the intervening levels a node is found which does not have any available captures 
in the next level, the search is halted at this level.  Otherwise, when the search has 
reached three times the maximum depth, the search is halted regardless. 
 Obviously, as was mentioned, this is only a partial solution to the problem 
of search horizon.  It seems we have simply exchanged one horizon for a slightly 
deeper horizon.  This is more or less the case.  However, quiescent search is a 
logical attempt, using a practical amount of computational resources, to continue 
down search paths until a stable, representative evaluation function can be found.  
If this is not possible within a reasonable amount of time, we simply must be 
satisfied with the dangerous approximation we are making and realize that just as 
humans are fallible, so too will be our search algorithm. 

 
Heuristic Move-Ordering:  The efficiency of the alpha-beta search is 

highly dependent upon the order in which board positions are evaluated.  If the 
search is able to quickly narrow its pruning window and if the extreme values at 
each leaf are evaluated first, it will be able to efficiently rule out positions which 
must necessarily obtain values outside of the search window.   

To this end, the next move to consider in chess should be ordered to 
provide the maximum possible likelihood of cut-off, meaning it should be the 
most extreme value possible.  Since capture or promotion moves alter the 
evaluation function of the board most profoundly, it stands to reason that 
considering these moves first will lead to better ordering of leaf nodes. [3]    



Our algorithm does exactly this.  When considering which branch to 
explore first in the min-max search tree, we first compile a list of all the possible 
capture or promotion moves available from the current position.  Each move in 
this list is then scored by the change it will make to the evaluation function, 
meaning in our case that the score is the absolute value of the captured piece in 
terms of the current weight vector being evolved (or the difference between the 
queen and the pawn value for a promotion).  That is, if the weight vector for the 
current player values a queen at 900, then the value assigned to a move capturing 
the queen will be 900.  The moves with the highest scores are then evaluated first 
followed by the remaining lower score capture moves.  Once all capture or 
promotion moves have been searched, the regular moves are next considered.  
These are not ordered in any very significant manner, except that we tend to 
consider moves by more powerful pieces first, expecting them to have the most 
impact on the game.   

 
Benchmarking of Alpha-Beta Improvements:  In the literature, these 

alpha-beta improvement techniques are often proposed and used to increase 
search performance.  However, it is difficult to find any quantitative analysis of 
just how effective these improvements are and how much benefit in decreased 
computation is gained by their usage.  As such, we conducted our own miniature 
empirical study of the effects of alpha-beta and each of its three improvements on 
the number of nodes searched and the time required to perform a search using our 
original checkers algorithm as a testbed.  Table 1 presents the results of these 
trials for various depths of search.  Note that the columns titled quiescent search 
and transposition tables represent the results for a mini-max search without alpha-
beta prunning. This was done to further separate the variables and attain a better 
understanding of exactly how large an effect each improvement had on the entire 
search tree.  Note the significant benefit gained in number of nodes searched 
when alpha-beta was used alone or with move ordering, as well as the significant 
decrease in computation associated with the use of either variable search depth 
(quiescent search) or transposition tables, especially at higher depths.  It might be 
interesting to note that the column corresponding to “quiescent search” is a 
variable-depth minimax search conducted between a depth equal to one half of the 
indicated depth and the indicated depth.  This is approximately as efficient as a 
fixed depth search to the indicated depth because for a given board it will return a 
more precise evaluation of the board applied to a shallower (sometimes but not 
always) but more stable board or the same evaluation function as the basic 
minimax search. 

We did the empirical study of the improvements using our checkers 
algorithm because we used checkers to develop our search algorithm and then we 
just adapted it for chess. Anyhow the results should be similar for the chess 
algorithm. Since the branching factor in the game tree is greater for chess than for 
checkers, it might be that the Alpha-Beta pruning is relatively more efficient for 
chess than the other improvements. And because there are a lot more possible 
moves in chess than in checkers, it might also be that the quiescent search 
improvement is a little bit less efficient relatively. 



 
  Depth Minimax Alpha-

Beta 
+ Move 
ordering 

Quiesc. 
search 

Transpo. 
tables 

4 3308 278 271 2078 2237 
6 217537 5026 3204 41219 50688 

Number 
of 

nodes 8 15237252 129183 36753 649760 859184 
4 0 0 0 0 0 
6 3 0 0 0 1 

Search 
time 
(sec.) 8 201 1 0 9 12 

 
Table 1:  The results of benchmarking alpha-beta and its improvements.   

 
 

 Table 2 presents the results of testing the completely advanced alpha-beta 
algorithm incorporating all three improvements against a basic mini-max search.  
The trials were conducted for two different board configurations, the first being 
the initial move of a game and the second being some intermediate configuration 
containing available jumps at level 1 of the search.  The enormous savings shown 
by this empirical study easily justifies the increased difficulty and complexity of 
implementation required for the advanced alpha-beta algorithm.  Indeed the 
advanced algorithm required less than .01% of the computational resources that 
the min-max algorithm required. 
 

 First move Jumps available 

Depth 8 Basic 
minimax 

Advanced 
algorithm 

Basic 
minimax 

Advanced 
algorithm 

Number 
of nodes 15237252 4835 56902251 6648 

Search 
time 
(sec.) 

201 0 739 0 

 
Table 2:  The results of benchmarking the entire advanced alpha-beta algorithm including 

all three suggested improvements versus a simple mini-max search.  The study was 
conducted at a search depth of 8 for two checkerboard configurations, the first move of a 
game and an intermediate move which contained available jumps at the first search level. 

 
 
The Evolutionary Algorithm in Detail 
 

With the basic chess player implemented, our next task was to re-implement the 
Kendall and Whitwell evolutionary algorithm.  Some of the more important features of 
this algorithm will be discussed herein. 
 



Selection Process:  Since the chess players are entirely deterministic, competition could 
be performed by two players playing just two games against one another, once as black 
and once as white.  The authors proposed a novel sequence of player choice which they 
proved would allow the best player in the population (if it existed) to end each generation 
in the final position, viewing the entire population as a vector.  Figure 5, courtesy of [1], 
details this process.  Basically, the strategy is to have µ−1 matches per generation where 
µ is the size of the population.  For the ith match, the first player is chosen to be the player 
at position i within the population.  The second player, j, is chosen from the tail of the 
population vector.  That is: 

µ≤≤+ ji 1  
 

In this way, as Figure 5 shows, the most powerful evaluation function currently in 
the vector should be involved in many matches and thus propagate quickly throughout 
the entire population.   

 
Mutation Process: 
optimum player in 
evolve at the same
convergence is actu
three main reasons: 

• First, the me
which, even 
small search
  

 The goal of the evolution procedure is to converge toward the 
a 6-dimensional space (6 parameters of the evaluation function to 
 time) starting from a discrete random population of seeds. This 
ally a very complicated problem from a mathematical standpoint for 

tric used for to determine mutation is the outcome of a chess game 
if deterministic, is not a perfect evaluation of the player’s quality. At 
 depths, a “better” player can have a “better” evaluation function but 



still head toward a “beyond-the-horizon” dead-end that eventually leads to the 
opponent’s victory. We can get rid of this problem – at least partially – by 
increasing the depth of the search. Indeed if the horizon is farther away there will 
be less chance to head toward a dead-end because there will be more possibilities 
to escape. With higher search depths, the outcomes of the games between the 
players should be more “fair”. Unfortunately, due to the severe time and 
computational constraints of this project, we could only experiment at reasonably 
shallow search depths, and consequently we perform our evolutions with a 
variable search depth between 2 and 5. This is obviously not enough to 
completely avoid the horizon effect, and this may have been one reason that our 
convergence results appear slower than those reported by Kendall and Whitwell.  
It may also account for the difference in the optimal values for evaluation 
function parameters that we eventually obtained; Kendall and Whitwell did not 
completely define the parameters of their quiescent search and so attempting to 
match their results completely proved impossible. Despite these difficulties, the 
procedure should still eventually converge toward the set of parameters which is 
optimal for the particular search depth used. 

• A second difficulty is due to the high number of parameters being evolved at the 
same time: the higher the dimension of the space the more challenging the 
convergence.  When a player loses a game, we mutate all the weights in that 
player with the same coefficient though the defeat was maybe due to only one of 
them. Hence even if the player was converged in several but not all dimensions 
(say rook, knight and queen) we just throw it away because of the other 
parameters (say bishop and legal moves).  In our study this is especially a 
problem with the weight associated with the number of legal moves. While the 
other weights are generally only multiplied by one or two, corresponding to the 
number of pieces of that type remaining on the board, the legal moves weight is 
often multiplied by 20 or 30.  If this weight is of the same order of magnitude as 
the other weights, one can easily see that it will completely swamp any 
differences between other dimensions.  Therefore if this weight has a large value 
but all other weights have been optimized, the player may still very well lose its 
matches. 

• The last difficulty is less important than the first two and only appears after a 
certain time in the convergence procedure. It is another consequence of the “game 
outcome” metric used. When all the population members are similar to one 
another, the evaluation functions of the different players might not be different 
enough to differentiate the players.  In this case most of the games will be draws. 
This problem prevents the population from ever completely converging.  After the 
evolution procedure has finished, therefore, we take the average of the final 
population to be the optimum player. 

 
For these three reasons, the mutation procedure has to be thought out carefully in 

order for the evolution to succeed. If the mutation parameters are not appropriate, the 
parameters population will not necessarily converge toward the optimum player or may 
even diverge.  The mutation procedure is actually defined from the metric output. There 



are four possible outcomes for a chess match consisting of two games: each player 
playing as black and white): 

• One of the player wins both games 
• One player wins one game and the other game is a draw 
• The two games are draws 
• Each player wins one game 

The two last cases are assumed to be equivalent in our procedure. For each situation we 
have to define a mutation procedure for the two players. In the paper that describes the 
evolution procedure we applied [1], they chose to remove the loser (if any) from the 
population replacing it by a clone of the winner. Then they mutated each weight of the 
two players according to the equation: 
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The coefficient R being defined by the match outcome: 
 

 Winner Loser 
2 victories 0 2 
1 victory and 1 draw 0.2 1 
2 draws or 1 victory on each side 0.5 0.5 

 
These R values suppose that at the beginning of the evolution the seeds are really 

different, and most of the games should end with 2 victories for one player.  Since for the 
initial generations of the evolution we want to explore the space to be sure of not being 
stuck on a local maximum, we keep the winner as it is but we mutate its clone by a large 
amount. Then as the evolution proceeds the seeds will converge and become more similar 
to each other. After a while, there should be more draws and most of the victories should 
be of the form “1 victory, 1 draw”. In this new situation we don’t want to explore 
excessively far anymore because the population should be close to the global optimum.  
On the contrary, we want to speed up the convergence. Therefore we choose to change 
the winner a little bit hoping to eventually hit the global optimum and we mutate the 
clone by a smaller amount than before to remain close to the supposed optimum without 
totally stagnating the population. 

 
Since the authors didn’t justify the values they chose for R, one can detect two 

axes of development to improve the convergence: 
• Are the relative values of the coefficients appropriate: Should the R used for 2 

defeats (for the loser) be 4 times as large as the R for 2 draws? 
• Is the scaling factor optimized for a fast convergence?  That is, could all of the 

R values used by Kendall and Whitwell be scaled up or down and still provide 
convergence? 

Even though they could probably be tuned more precisely, the relative values of 
the R values for different outcomes at least have some justification, as described above.  
Therefore we chose to focus our efforts on the scaling factor of the mutation coefficients.  
This work is discussed in further detail in the Results section below. 
 



Pedagogical Evolution Walkthrough:  In order to ensure complete understanding of the 
evolutionary algorithm and its inner workings, we now attempt to step through a 
simplified pedagogical example of the evolution in action.  Let us assume for the moment 
that our population size, µ, is just three.  Further, we will imagine that we are only 
evolving one of the parameters of the weight vector while leaving the others constant.  
Concretely, we will assume that an evaluation function differs from other functions only 
in the value of its first weight.  This weight denotes the value of a rook.  Since the other 
values are all constant between the functions, we can therefore ignore them for the 
moment and name each evaluation function only by its one changing parameter.   Thus 
our initial random population might look something like Table 3. 
 
 

 Player 1 Player 2 Player 3 
Rook Value 500 200 1200 

 
Table 3:  Initial population for simplified example assuming that we are only evolving the value of 

the rook in each case.  Note that the average rook value in this case in initially 633. 
 
 
 The first step in beginning competition is to select the two players for the first 
match.  Player 1 is selected automatically as described above under selection process.  
The second player is chosen uniformly randomly from among the tail of the population, 
in this case meaning there would be a 50% chance that Player 2 would be selected and a 
50% chance that Player 3 would be selected.  Let us assume that Player 2 has been 
selected as the second competitor.   
 Now the match is played.  The first game pits Player 1 as white against Player 2 
as black.  This means that the rook value of 500 is used whenever Player 1 is performing 
its alpha-beta search and the rook value of 200 is used whenever Player 2 is performing 
its alpha-beta search.  The match proceeds.  At some point in the match, let us imagine 
that Player 2 has the option of trading his rook for Player 1’s knight.  Since Player 2 
values his rook so little, he is very likely to make this (strategically bad) move.  Player 1 
exploits this blunder and easily wins the first game. 
 The second game pits Player 1, now playing black, against Player 2 as white.  
Once again, Player 2 sacrifices his rook which he does not highly value and Player 1 is 
able to win.  Thus, the match score stands at 2 games to 0 in favor of Player 1.   
 After the match is finished, the mutation phase of the evolution next occurs.  In 
this case, the standard deviation of the population is approximately:  
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Since Player 1 won both games, he is first replicated into Player 2’s position.  
Then the two copies of Player 1 are mutated using equation 2 and an R value of 0 and 2, 
respectively.  This results in the population shown in Table 4. 
 
 



Population Player 1 Player 2 Player 3 
Pre-Mutation 500 200 1200 
Post-Match 500 500+[-.5,.5]*2*513 1200 

Post-Mutation 500 757 1200 
 

Table 4:  The changing population as the first mutation proceeds.   The average rook value after the 
first mutation is now 819. 

 
 Having concluded the first match, we now move on to the second.  Now Player 2 
is selected as the first competitor as per the rules outlined under selection process.  The 
second competitor is chosen uniformly randomly from the tail of the population vector.  
In this case, the tail consists only of Player 3, so it is selected as Player 2’s opponent. 
 Now the match proceeds.  Player 2 plays white first against Player 3’s black.  At 
each point in the alpha-beta search of Player 2, whenever the value of a rook is needed 
for the evaluation function, the value 757 will be used.  When Player 3 evaluates the 
value of a rook, he will use the value of 1200.   
 The match proceeds.  In this case, we will imagine that there arises a point in the 
game where Player 2 plays a fork move against Player 3’s rook and queen.  This means 
that Player 3 will end up losing either his queen or his rook no matter what he does, but 
he has the choice of which one to sacrifice.  Since Player 3 places such a high value on 
his rooks, he opts to lose his queen instead.  This tactical error allows Player 2 to 
dominate the game and win.  
 The second game places Player 3 as white against Player 2 as black.  In this case, 
Player 3 as white goes on the offensive and Player 2 is never able to exploit the over-
evaluation of the rook.  Thus, the game ends in a three move draw with neither player 
able to gain a decisive advantage. 
 The score for the match then stands at 1 win and 1 draw in favor of Player 2.  
Now the mutation phase commences.  Since Player 2 did win a match, Player 3 is 
removed and Player 2 is duplicated in its place, as per the rules of equation 2.  The 
standard deviation of the population in this case is approximately: 
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The R values used to mutate the two copies of Player 2 are now .2 and 1.  Thus, the 
population in Table 5 results. 
 
 

Population Player 1 Player 2 Player 3 
Pre-Mutation 500 757 1200 
Post-Match 500 757+[-.5,.5]*.2*354 1200+[-.5,.5]*1*354 

Post-Mutation 500 771 1047 
 

Table 5:  The changing population as the second mutation proceeds.  The average rook value after 
this second mutation is now 773.  The standard deviation is 274. 

 



 So after just two mutations and one generation, we have taken a population that 
started with standard deviation of 513 and nearly halved that value to just 274.  The 
population has already begun to converge toward some final value. 
 The evolution would hereafter proceed by first inverting the population vector, 
meaning in this case that Player 3 would be placed into the first position and Player 1 
would be placed into the third position.  Then generations similar to the one just stepped 
through would occur.  The evolution would proceed either for some set number of 
generations, some predetermined amount of real-world time had elapsed, or until some 
small value had been reached for the standard deviation indicating that no further 
convergence was necessary for the population.  In this way, an initially random 
population of players can be competed, mutated, and evolved to discover a much more 
optimal population of players without the need for expert domain specific knowledge to 
tune the various relative weights.     
 
 

Results of Experiments 
 
Comparison to Existing Algorithm
 
 Our first goal was to implement Kendall and Whitwell’s algorithm and to 
reproduce as closely as possible the results they published in their paper.  Unfortunately, 
we found this task to be nearly impossible due to a number of unidentified parameters of 
their algorithm.   
  The first of these parameters is what the authors described as “a small fixed bonus 
. . . given for control of the center squares and advanced pawns with promotion 
potential.” [1]  The value of this small fixed bonus was not, however, explicitly stated in 
the paper.  As such, we opted to select a value of zero for this bonus, feeling that in this 
way we would know which direction the data should be affected.  That is, by choosing 
not to include the bonus, we realized that pawns would certainly be worth less than in 
Kendall and Whitwell’s results because the computer would not be trying to hold onto 
them in order to retain the promotion bonus.  If we had guessed a value for this bonus, we 
could have guessed too high or too low and would not have known in which direction our 
results should have been affected.  As such, we can now expect with confidence that 
pawns in our algorithm will be worth some amount less than the authors found them to 
be, or in other words that the other pieces will have relatively higher values than in the 
Kendall and Whitwell case.  Similarly, the bonus for center square control was set to zero 
for the same reason.  By choosing zero, we know that we have guessed too low and could 
adjust our data appropriately if necessary.   
 A second source of possible difference between our algorithms was the lack of 
clear definition of the quiescent search method employed by the authors.  They simply 
stated that “quiescence was used to selectively extend the search tree to avoid noisy board 
positions where material exchanges may influence the resultant evaluation quality” and 
cited the work by Bowden which first introduced the concept of quiescent search.  [13]  
This left us wondering how deep would be deep enough.  As has been previously noted, 
the depth of the search can have a profound effect on the optimal evaluation function as 



certain pieces may be worth more or less in a horizon-limited situation.  Since Kendall 
and Whitwell did not explicitly report the depth of their quiescent search extension, we 
were forced to arbitrarily choose a value for this depth, resulting in significant differences 
between our results and the paper’s. 
 
 We first repeat the figures provided by Kendall and Whitwell demonstrating their 
algorithm’s convergence in Figures 6 and 7.  To these results can be compared the results 
for our re-implementation, as shown below in Figures 9 and 10.  The legend for our 
results depicting which symbol and color correspond to which weight element is shown 
in Figure 8.  The re-implementation results were obtained using an initial population of 
50 players, just as in the Kendall and Whitwell case.  The search depth in this case was 
set to be between 2 and 4.  Note that in reading these figures and all further results, the 
value of a pawn has been scaled to 100 in order to maintain some common scaling 
measurement.  Note also that Kendall and Whitwell’s values are reported with the pawn 
value scaled to 1 instead of 100.     
 
 
 
 
 
 

 
 
Figure 6:  Kendall and Whitwell’s evolution results.  This figure shows the average parameter weight 

as a function of evolutionary generation.  Note that a pawn is scaled to 1 in this figure while in our 
tests, it was scaled to 100.   

 
 



 
 

Figure 7:  Kendall and Whitwell’s evolution results.  This figure show the standard deviation of each 
individual weight vector versus the evolutionary generation. 
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Figure 9:  The average value of each weight plotted
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Figure 10:  The standard deviation of each weight versus generation.  Note that the convergence rate 
is very similar to that of Kendall and Whitwell.   

 
 
 What we see from the average values obtained by our re-implementation in Figure 
9 is that the undefined pawn bonuses are playing a large role.  If we ignore the rook for a 
moment, we will see that in our case the piece values are approximately 80% to 100% 
greater than the Kendall and Whitwell values for the queen, bishop, and knight.  As we 
mentioned before, this is likely due to the lack of fixed bonuses given to the pawns.  Our 
players have very little incentive to hold onto their pawns and are thus more willing to 
give them up, decreasing the perceived value of the pawns and comparatively increasing 
the values of the other pieces.   
 When examining the difference in the value of the rook, we would expect it to 
have been scaled by the same factor to approximately 800 or so.  However, here the 
horizon-effect seems to be playing a role.  In chess, the rook is a very difficult piece to 
use properly.  In the beginning of the game, it is buried behind pawns and requires the 
most “positional” moves of any piece in the game before it can have an open path to the 
enemy.  In a fixed-horizon search like ours, this devalues the rook, for it is rare that the 
proper sequence of moves will actually be executed to give the rook an effective 
formation from which to attack.  The reason we see a slightly depreciated value for the 
rook in our re-implementation is that we could not accurately reproduce the exact same 
level of horizon-effect as Kendall and Whitwell since they did not adequately report the 
depth of their quiescent search.   
 
 
Parametric Study of the Mutation Coefficients 
 
 As explained previously, we undertook to discover the effect that scaling the R 
values used in the mutation procedure would have on the convergence of this 
evolutionary algorithm.  To do this, we performed four separate evolutions, the results of 
which are shown in Figures 11-14.  The mutation parameters used for each of these trials 
are shown in Table 6, being simply scaled values of those used by Kendall and Whitwell.  



Each evolution started from the same initial population of 30 players.  These players were 
competed for 15 generations (except for the evolution with large scaling factor which was 
clearly diverging and so was halted after only 8 generations).  The search depth was set to 
be between 2 and 5.  Each evolution required approximately 30 hours of computational 
time on a 1.5 GHz Pentium 4 processor with 512 MB of RAM available.  Memory usage 
did not exceed 256MB, however.    
 
 

Scaling 
factor 

R winner 
(2 victories) 

R loser 
(2 victories) 

R winner 
(1 victory) 

R loser 
(1 victory) R draw 

2 0 4 0.4 2 1 
1 0 2 0.2 1 0.5 

0.5 0 1 0.1 0.5 0.25 
0.25 0 0.5 0.05 0.25 0.125 

 
Table 6:  The four scaling factors used to analyze the effect of mutation parameters on the Kendall 
and Whitwell evaluation function evolution.  By bracketing the author’s initial guesses of mutation 
parameters, we hoped to discern the robustness of their algorithm had they made slightly different 

choices for the mutation coefficients. 
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Figure 11: Evolution results for a scaling factor of 2.  (left) Average values of piece weights and 

(right) standard deviation of piece weights. 
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Figure 12:  Evolution results for a scaling factor of 1.  (left) Average values of piece weights and 

(right) standard deviation of piece weights. 
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Figure 13:  Evolution results for a scaling factor of ½.  (left) Average values of piece weights and 

(right) standard deviation of piece weights. 
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Figure 14: Evolution results for a scaling factor of ¼.  (left) Average values of piece weights and 

(right) standard deviation of piece weights. 
 
 
 In evaluating these figures a trend is clearly noticeable.  When the mutation 
coefficients were doubled, the evolution became unstable.  The mutations simply take the 
population too far astray and tend to increase the standard deviation of the population no 
matter what set out of outcomes occurs.  Consequently we didn’t run as many generations 
as for the other scaling factors because it wasn’t worth spending time on more 
generations.  This is seen by the diverging values of Figure 11.  Figures 12 through 14 all 
show populations which tend to or have already converged.  However, what is noticeable 
is the rate at which these various populations converged.  Shown in Table 7 is a column 
labeled convergence factor.  This factor represents a ratio of the final population standard 
deviation to the initial standard deviation (geometrically averaged over all 6 weight 
vectors.)  Thus, if this convergence factor is greater than one, the population has 
diverged.  If it is exactly 1, the population has remained stable.  Values less than one 
imply convergence, with lesser values identifying faster or more complete convergences.  
Using this column in Table 7 as a quantitative measure of what is easily qualitatively 
seen in Figures 12 through 14, we can determine that the smallest mutation parameters 
gave the fastest convergence rate.  As the parameters were increased, the convergence 
rate decreased, until it eventually became unstable. 



 However, this does not mean that choosing the smallest mutation parameters is 
the best solution to our problem.  In the limit, this would of course imply that we choose 
0 for our mutation coefficients and not change the initial population at all.  Of course, we 
would also not be exploring the space and would almost inevitably miss the global 
optimum.  If we choose our mutation parameters to be too small, the evolution will 
definitely converge.  However, it will not always converge to the most optimal solution 
available.   
 

Scaling factor Convergence 
factor 

Average player 
ranking 

2 2.96 4   (0v / 4d) 
1 0.31 3   (2v / 3d) 

0.5 0.14 1   (4v / 1d) 
0.25 0.07 2   (3v / 1d) 

 
Table 7: Comparison of the average player for each of the different scaling factors studied, after 

evolution for 14 generations. The two criteria for the convergence are the ratio between the average 
final and initial standard deviations (convergence factor) and the quality of the average player 

(ranking of the four average players) 
 
 This result is demonstrated by the final column of Table 7, labeled average player 
ranking.  When the evolution had completed, we took the final populations of each trial 
and found their mean players.  These four players were then competed each against the 
other as white and as black, for a total of six games per player.  The outcomes of those 
games are listed in this column of Table 7 along with the player’s rank with 1 being the 
player which won the most games and 4 being the player that lost the most.   
 What is seen is that the evolution with scaling factor of .5 produced the most 
optimal player.  This evolution not only converged (convergence factor .14), but was able 
to search the space effectively and find the best player.  The evolution with a smaller 
scaling factor of .25 also converged (factor of .07) but did not explore the space 
effectively.  It ended with a sub-optimal player which could not defeat the player found 
by the more exploratory evolution.  The evolution with scaling factor of 1 converged 
significantly (with a convergence factor of .31) but apparently did not have sufficient 
time to reduce the variation in its population and focus on a single optimum.  This made 
its final population average weaker than that of the more focused evolution with a scaling 
factor of ½.   
 
 

Conclusions 
 

In order to evaluate Kendall and Whitwell’s choice of mutation parameters as 
discussed above, we conducted a simple parametric study, performing the evolution 
procedure starting from the same initial population with variously scaled mutation R 
values. The set of R values was defined by taking the original set of values given by 
Kendall and Whitwell and scaling them by the coefficients 2, 1, ½, and ¼. 
                                                 



We assert that the influence of the scaling factor was relatively easy to 
understand: if the factor was too high, the procedure did not converge, but if it was too 
low it converged toward a value close to the best seed in the initial population, even if 
that was not the global optimum.  Such a situation makes the usage of evolutionary 
algorithms particularly dangerous in precisely the domains for which they were originally 
designed, those domains in which expert knowledge of the true solution is difficult or 
expensive to obtain.  If a user is not careful to tweak the mutation parameters many times 
and discover the dependence of the solution on them, his algorithm may seem to 
converge, but may be converging to a horribly sub-optimal value. The scaling factor must 
be high enough to explore the space and be sure to eventually include the global optimum 
into the population, but low enough to quickly converge toward this optimum solution.   

Obviously finding the best scaling factor is itself a difficult problem which could 
be represented by a maximization statement in its own one-dimensional space.  The 
“Holy Grail” might in fact be to evolve the evolution procedure in order to find the set of 
R coefficients that lead to the fastest and most accurate convergence. We can do this by 
applying the same procedure that is used to evolve the seeds of the evaluation function. 
Starting from a random population of R values we can use each of them to evolve an 
evaluation function from the same initial population. Even if several sets of R coefficients 
from the R population should lead to approximately the same player in terms of the 
evaluation function, the number of generations to converge would be different. There 
would also be sets of R with too small of a scaling factor whose populations would 
converge toward a non-optimum player.  To assess which set of R is better, we could 
have play-offs between the averages of the populations obtained after a certain number of 
generations. Then we would keep the “good” set of R values, replace the less fit members 
by mutated clones of the good ones, and do the procedure again until we converge toward 
a final set of R coefficients.  Unfortunately, however, such a technique requires immense 
amounts of possibly expensive computation.   
 Perhaps this instability and lack of robustness to slight algorithmic changes are 
two of the reasons evolutionary algorithms have long remained an interesting, shot-in-
the-dark alternative to conventional optimization methods, but have not been adequately 
generalized to the solution of arbitrary problems.  With more study and sufficient 
computational resources, we hope future researchers can more deeply investigate and 
perhaps find some theoretical basis for the variation of evolutionary convergence with 
changing mutation parameters.  As it stands, our study should serve as a caution to future 
implementers:  An evolutionary algorithm must be finely honed and sufficiently 
investigated in domains of partial or complete knowledge before being applied to a 
domain with unpredictable results.      
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