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Introduction

  This document describes the insights I have gained during implementation and 

documentation of the SLAM process. I have, with Morten Rufus Blas, implemented 

SLAM and written a tutorial on the subject. During this work I have learned a lot of 

the key elements of the SLAM process and the problems one will encounter when 

working in this area. I will describe the major issues here, the issues that I find most 

important.

  As the SLAM process is, roughly speaking, divided into a number of steps I will 

follow this chronological order in this document, starting with the landmarks and 

landmark extraction as this is the first task one faces when doing SLAM. 

Landmarks

  Landmarks are geometric objects (when using a laser scanner), that can be 

recognized over and over again. Specifically some properties of landmarks are 

important:

  They should be re-observable, distinguishable from each other and stationary. 

Furthermore we need a critical number of landmarks to be able to localize ourselves. 

Landmarks can be extracted in a number of ways. We initially started with spike 

landmarks, which seemed as a fine solution in the beginning. We later found out that 

they were not precise enough. The spike landmarks gave lots of landmarks, but that 

does not help if they are not precise. Instead of the spike landmarks we decided to go 

for the RANSAC landmarks. They proved to be much better and a lot more precise. 

The increased precision was probably also because we now use a number of laser 

scanner samples and gather these into one landmark. So the lesson learned is that you 

are much better off using landmarks that are more accurate than just mere points.

  In the EKF we have used the range to a landmark as a measurement of the error on 

the measurement. E.g. the error can be 1 cm/m and with a range to a landmark of 2 m 

the error is 2 cm. This posed a problem when using RANSAC as the range sent to the 

EKF is not also a measure of the length of the laser scanner readings, since these are 

only used to calculate the landmark position. Remember the landmark is the point on 

the line found, which is closest to (0,0). If e.g. the robot is 100 meters from (0,0) the 

landmark may be close to (0,0) meaning that the landmark may be up to 100 meters 



from the robot, even though the laser scanner can only measure just around 8 meters! 

So we decided to use the point closest on the line, to the robot as the error range and 

the error bearing. The fact that most landmarks will tend to accumulate around (0,0) 

also means that there may be a lot of landmarks just around this point. When doing 

data association it can be hard to distinguish the landmarks from each other if they are 

all accumulated around (0,0). This means that our RANSAC landmark extraction 

strategy will not really scale very well with increasing number of landmarks.

  We also used RANSAC in a, to us, novel way. We extract multiple lines instead of 

just a single line. Whenever some points have been associated to a line they are 

removed for this round, so they will not also be a part of other lines. This proved to be 

very useful. It gave us very exact landmarks and also few landmarks, which is 

preferable. Having less landmarks gives less problems with data association and more 

precise landmarks is of course the best.

  I have learned that the data association and the way landmarks are added to the 

database should be tuned to the landmark extraction used. For example using the 

spike landmarks there was much need for removing landmarks, since there was very 

many spike landmarks. An effective data association algorithm was also needed since 

the landmarks tended to lie close to each other. When adding landmarks we decided 

that they had to be observed a certain number of times before they were actually 

added as landmarks. Also this number of times depends on the quality of the 

landmarks and on the odometry performance. If the odometry is really bad, it can on 

one hand be a good thing to hurry up and add a landmark, so more landmarks are 

available for use in navigation. But on the other hand we do not want to include bad 

landmarks in the state. So a balance has to be found. Maybe it would be an idea to 

couple the robot covariance and the addition of landmarks, such that a landmark 

measured two times from a position with very low covariance gets added, while a 

landmark observed ten times from a position with high covariance should not be 

added. This way a dynamic addition of landmarks could be used.

  We also found an optimization in adding new landmarks after updating the old 

landmarks. This way there is less data to process. It is not a very complicated 

optimization, but nonetheless it is effective and easy to implement. It is just a question 

of rearranging the order in which the functions are called. Summarizing it is important 

to really think of a desired data association policy and a policy for adding landmarks. 



  In general there is a lot of tuning of parameters to find the right balance in the EKF. 

The measurement error and the process error is an example of this. They should 

resemble the error probabilities of the measurement device and the robot odometry 

performance. But in reality what you want to do is to tune the errors to obtain the right 

learning rate. If for example the odometry is very precise and the measurement device 

is not precise it will mean that we only trust the odometry. So if we want to use the 

measurements more we need to either decrease the measurement error or increase 

process error. Also if this means that the values do not resemble the actual physical 

properties they resemble. As a last thing, regarding the errors we also found that 

having too little error yielded a computation error. This is due to the innovation 

covariance in the Kalman gain. If the innovation covariance results in a zero matrix 

we will not be able to get the inverse of the matrix. So we always need to maintain 

some degree of uncertainty.

  The SLAM process is a quite interesting field because lots of the steps performed 

can be performed in different ways. There are an infinite number of permutations that 

may qualify as SLAM, each with different properties and advantages. During the 

creation of the tutorial I have only touched on a few of these possible solutions, but 

during the literature review I found an amazing “add-ons” to SLAM. This is what 

makes it so interesting because SLAM can be tuned and tweaked to fit your needs, if 

not you may invent a new way so it fits your needs.

  SLAM should not be so hard; it is after all just a number of matrices and operations 

on these. And it is not. The problem is that it can be hard to make sense of the 

intermediate results in all the matrices. The only real result there is to check if SLAM 

has succeeded is if the robot moves correctly. If the final result is not correct it can 

almost impossible to find the error. 

Final notes 

Unfortunately we did not manage to make our SLAM application completely bug-

free, which is a little ironic since we have written a tutorial on the subject. This is why 

we have not included the source code. I feel that it does still make sense to write a 

tutorial, since we have the whole process right. This also underlines the fact that it is 

very hard to debug a SLAM application, since many of the intermediate results are 

now known, but one can mostly only rely on checking the final output. An extended 



version of the tutorial would make sense, which should include information on 

debugging SLAM. This would of course require that our application works. 

Conclusion 

  Overall I gained a lot of insight and a deeper understanding of the SLAM process, 

how data flows in the system and what effect the different operations have on the 

overall output. It has been really helpful to write this tutorial and proves that you 

really learn a subject by teaching it. Not only the SLAM process has been challenging 

but also all the other stuff and hurdles have let me get a feeling on the problems one 

faces when working with robots. I feel that I am ready to begin thinking of extensions 

to SLAM, ideas that would make the process better, contributing to the SLAM 

community.

  The downside of this project was that our SLAM did not work completely correct, 

thus disabling us of including the complete source code. 


