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Abstract 

To build autonomous robots capable of operating wherever humans do, we must develop local

ization and mapping strategies that can handle changing environments. Recent work by Se, 

Lowe and Little has shown that current machine vision technology makes visual SLAM feasible 

in a potentially wide range of static environments. However, their system treats vision system 

errors in a manner which imposes a fundamental limit on its ability to handle environments 

with motion. In this paper, I first identify important limitations of Se et al.’s error handling 

approach common to virtually all metric SLAM systems and, based on this analysis, propose two 

techniques for overcoming these limitations. I also present a third technique, based on optical 

flow, which specifically addresses the issue of visual SLAM in dynamic environments. Finally, I 

discuss two proof-of-concept systems I built which explore the usefulness of this third technique 

in the context of place recognition. 
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1 Introduction 

To build autonomous robots capable of operating wherever humans do, we must develop localization and 

mapping strategies that can handle changing environments. Visual strategies are especially desirable, as 

they have the potential to produce substantially more useful maps than other approaches (e.g. with denser 

features at multiple height levels). Recent work by Se, Lowe and Little has shown that current machine 

vision technology makes visual SLAM feasible in a potentially wide range of static environments. However, 

their system treats vision system errors in a manner which imposes a fundamental limit on its ability to 

handle environments with motion. 

In this paper, I first identify limitations of Se, Lowe and Little’s error handling approach common 

to virtually all SLAM systems and, based on this analysis, propose two techniques for overcoming these 

limitations. I also present a third technique, based on optical flow, which specifically addresses the issue of 

visual SLAM in dynamic environments. Finally, I discuss a proof-of-concept system I built which explores 

the usefulness of this third technique in the context of place recognition. 

It is worth noting that the original focus of my course project was the use of optical flow to enable visual 

SLAM in dynamic environments. While working with this idea, I made the observations about Se, Lowe 

and Little’s error treatment and possible improvements that I outlined above; I believe these observations 

constitute the meat of my project. 

2 Sensor Error Treatment and Data Association in SIFT SLAM 

Virtually all metric SLAM systems operate by predicting relative landmark positions based on relatively 

coarse motion estimates, interpreting sensor data to identify measured landmark positions based on those 

estimates, and revising position accordingly. Predicted landmark positions are a key element of the data 

association process in virtually all metric SLAM systems, as follows. If SLAM landmarks cannot be distin

guished by a sensor system other than on the basis of their position (as with the “flat region” landmarks 

typically produced by sonar or laser range analysis), they must be chosen very carefully to avoid confusion 

with other landmarks. In practice, this has resulted in the use of a “validation gate”, a set of thresholds 

governing how close, in position, a measured landmark must be to an expected landmark to be considered 

a match.  

In SIFT SLAM, the validation gate takes the form of a pixel window (10x10 in Se, Lowe and Little’s paper) 

centered on predicted position in which landmarks must be to get matched, as well as similar constraints on 

disparity and SIFT scale (derived from depth). Although SIFT SLAM includes a matching threshold for the 

SIFT orientation component of a landmark, a measure of its actual image content, this threshold is not part 

of the validation gate, as its value has nothing to do with the position of the landmark. Note that as SIFT 

feature matching is a visual process, the difference between matched and expected SIFT feature position 

can be viewed as an estimate for the optical flow or image motion at the location of the SIFT feature being 

matched.1 

1It might perhaps be better to term the difference as measured motion rather than optical flow, as “sparse optical flow” is 
somewhat of an oxymoron, and overloads the technical definitions of optical flow - as opposed to motion estimates - as “apparent 
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The parameters for this gate impose hard limits on the performance of the SLAM system in the following 

ways: 

1.	 They imply a bound on the maximum odometry error that the system can handle, as if odometry 

readings are sufficiently far off, no landmarks previously known about by the sensor system will fall 

within the validation gate boundaries. 

2. Perhaps more intuitively, they imply a maximum sensor error in locating landmarks, as again if the 

sensor’s reading for a given landmark is sufficiently far off, it will not be counted. 

3. If the sensor system cannot distinguish between landmarks at all other than by their position - that 

is, if a landmark is simply a signal that is stably extractable from the world at a given position 

the validation gate imposes a limit on the closeness of landmarks. This is because if two landmarks 

were chosen with overlapping validation regions, they could not be distinguished by the system. Note 

that in SIFT SLAM, the vision system can distinguish between landmarks on a basis other than their 

position; I will discuss the implications of this later. 

4. They imply	 a limit on the motion resolution of the SLAM system. That is, if the SLAM system 

attempted to notice landmark motion (either while moving, in which case the detected landmark 

motion would be first computed relative to the robot’s motion, or while stationary) it would only 

be able to do so for landmarks moving faster per sensor processing cycle than the validation gate. I 

attempt to illustrate this in the figure below. 

In this figure, the robot is represented by Mario and a slowly moving “adversary” by Wario. As 

long as wario’s motion is within the grey region, corresponding to the validation gate, Mario will 

think his position estimate is off and adjust it accordingly. While other landmarks not exhibiting 

those errors might help to reduce the impact of Wario’s motion, its effect will be nonzero, and 

possibly quite significant. 

motion of the brightness pattern in an image”. 
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2.1 SIFT SLAM Strongly Trusts Sensor Data 

The overarching conclusion of many of David Lowe’s evaluations of SIFT is that it is remarkably reliable; two 

SIFT features are relatively rarely matched when the real-world objects on which those features are located 

do not “look the same” to people. The stability results in his paper indicate that the measured parameters 

of SIFT features (their scale and orientation) are relatively stable at least to small displacements. 

SIFT SLAM exploits this fact in its position estimation scheme by essentially circumventing the bulk of 

traditional EKF SLAM. It first treats the odometry reading as both the measurement and prediction for 

the robot pose, as opposed to treating the odometry reading as the prediction and the individual position 

observations for landmarks as the measurements. The H matrix for the “Kalman filter” SIFT SLAM uses 

is simply the identity. 

It then incorporates landmark positions by computing a least-squares best-fit position minimizing errors 

between predicted landmark pixel coordinates in its view and the observed ones. Even this process throws 

away information, as the measured depths of the landmarks are used only indirectly. The error terms being 

minimized in SIFT SLAM are below, taken from Se, Lowe and Little’s paper, where r
i 

� is the predicted pixel 

row position of matched landmark i and rmi is its detected pixel position: 

eri = r
i 
− rmi (1) 

eci = c
i 
− cmi (2) 

Although the depth of a landmark is used to predict these values, SIFT scale error - a measurement analogous 

to pixel position produced by SIFT - is not directly minimized. Actually, SIFT SLAM computes two least-

squares fits, using the first one to identify outliers (according to a standard residual measure, with a threshold 

of 2 pixels) and the second one to produce an estimate using only the non-outliers. 

SIFT SLAM then apparently computes a measure of the quality of the least-squares fit and treats it as a 

kind of “measurement uncertainty”, adding it to the position uncertainty predicted from its motion model. It 

then feeds this total uncertainty estimate into a Kalman-filter-like procedure, whose actual equivalence to an 

EKF I have not been able to verify, to weight the least-squares position estimate and the odometry estimate. 

The output is a position estimate along with a position uncertainty which is later fed into independent EKFs 

for the each tracked landmark. 

This structure reflects a strong trust in sensor readings in two main ways. First, its definition of an 

outlier in the least-squares procedure is quite stringent. This means all the offsets in measured positions 

must be quite coherent, reflecting primarily motion and not sensor error. This is a somewhat subtle point, 

which I have not had the opportunity to verify in simulation, but worth investigating further. Second, it 

does not apply a full EKF to the SLAM problem; instead, it decouples it into pose estimation and landmark 

estimation, restricting landmark uncertainty to be independent (ala FastSLAM). The choice to throw away 

these sources of information reflects the confidence the SIFT SLAM designers had in the quality of SIFT 

matching. It also raises the issue that the uncertainty estimates produced by SIFT SLAM do not mean the 

same things as the uncertainty estimates produced by many other metric SLAM algorithms. 

It would be interesting to check if the position estimates produced by SIFT SLAM vary significantly 
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from the least squares estimates produced by its vision system; if so, SIFT SLAM would be trusting its 

sensors almost absolutely. It is also worth noting that the sensor error “model” used by SIFT SLAM in the 

per-landmark EKFs use an arbitrarily chosen variance of 1 pixel; this value is quite low, another reflection 

of confidence. It is not as compelling, however, because SIFT SLAM does not appear to use its landmark 

EKFs for for much, given its decoupling of the state estimation. 

2.2 Predictions for SIFT SLAM in Dynamic Environments 

The specific choices made in SIFT SLAM suggest it will actually perform reasonably well in dynamic envi

ronments, as long as motion is fast enough that it doesn’t introduce the validation gate errors I discussed 

earlier. This is because if a landmark is not matched (when expected) enough times, SIFT SLAM throws 

it away; landmarks on a moving person, then, are likely to get thrown out if the person moves too much. 

If a person moves slowly for awhile, it could conceivably corrupt the robot’s position estimate a bit, but 

combined with the possibility of rejection as an outlier in the least-squares estimate - it seems unlikely that 

the majority of moving bodies will confuse SIFT SLAM. 

An interesting exercise would be to predict the motion thresholds implied by SIFT SLAM’s error handling 

choices to determine what “amount” of motion in a scene is likely to fool it, or whether or not sufficiently 

slow motion is likely to be a problem in any real SLAM scenarios. 

3 Techniques for Improving Visual SLAM Performance 

The above analysis suggests several possible improvements to SIFT SLAM. Some of these may even be usable 

in other SLAM systems. 

3.1 Tuning Thresholds to Minimize Uncertainty 

The default threshold values provided in SIFT are were apparently set by Se, Lowe and Little based on 

their experience with the SIFT system. It is not at all clear that they were optimally chosen. Given the 

uncertainty measurements produced by virtually all metric SLAM algorithms, however, it should be possible 

to search for better threshold values, perhaps on a per environment basis. 

A naive scheme for doing so would involve running SIFT SLAM (or perhaps a very similar SIFT-based 

SLAM setup using FastSLAM at its core) and measure position or total uncertainty (e.g. covariance mag

nitude or particle entropy) for various choices of validation gate values, matching thresholds, and landmark 

tracking miss count thresholds. The thresholds which produced the best output at the end of a run could 

then be used in future SLAM scenarios in a similar environment. Alternately, if the cost of evaluating multi

ple thresholds is small, the thresholds could be set adaptively (perhaps every few frames) over the course of 

a given SLAM task. This might help improve SLAM performance in tasks where SIFT performance varies, 

such as transition from regions with identifying marks on walls to fairly homogeneous ones. 

Of course, it is not clear that minimizing an uncertainty measure will actually improve SLAM accuracy, 

as the world might conspire to produce sensor readings with lower uncertainty in an incorrect location. In 

fact, the motion/validation gate problem I discuss above is an instance of this, where minimizing uncertainty 
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via standard SLAM approaches naively results in erroneous position estimates. However, it is not clear if 

this will be a problem in real world applications, and in the worst case tuning thresholds during “training” 

SLAM runs where absolute position can be tracked might still improve SLAM performance. 

3.2 Identifying Outliers 

The central idea behind most metric SLAM systems is that motion errors should be consistently reflected in 

deviations from predicted and measured landmark positions (modulo sensor uncertainty). Therefore, even 

in the presence of slowly moving objects, the vast majority of the landmarks in a scene should deviate from 

predicted values in a consistent manner. Relative motion of some landmarks should show up as a cluster of 

landmarks with a different (but internally consistent) kind of deviation from motion error. 

If these clusters could be programmatically detected, they could be used to rule out deviations from 

prediction which are more likely to correspond to landmark motion than robot motion error. Identifying 

these clusters via PCA or even some kind of regression might be possible. One interesting question is whether 

or not the least-squares fit with rejection of outliers in SIFT SLAM actually produces this effect to some 

degree. 

3.3 Identifying Motion through Optical Flow 

A central problem for SLAM in dynamic environments is the rejection of landmarks which actually lie on 

moving objects. The rationale is simple: if landmarks seem to move, any SLAM scheme will interpret this 

motion as an error in its position estimates, and erroneously revise them. 

The problem, then, is to avoid selecting landmarks on things which can move. A reasonable first step 

towards this goal, reachable given current machine vision technology, is to avoid selecting landmarks on 

objects which are moving. As outlined above, this problem is currently intractable when the robot performing 

SLAM is moving, as it cannot distinguish between small errors in its sensor apparatus or motion model and 

small motions. A workable solution, however, may be to only assign new landmarks when the robot is 

stationary, and sensor uncertainty is therefore small, so all measured motion of landmark candidates is likely 

to correspond to real landmark motion. 

The measurement of landmark motion could proceed in at least two ways. First note that he latest 

incarnation of SIFT includes “keypoint descriptors”, a better measure of feature content than the SIFT 

orientations used in SIFT SLAM. If keypoint descriptors can be matched reliably, it would be interesting to 

see how SLAM performance is affected by only using matching thresholds on SIFT properties, not positional 

properties. If this did not result in large numbers of false matches, the SIFT system could then use landmark 

matching to estimate landmark motion when the robot is stationary, and reject those landmarks which moved 

more than some very small amount. This would essentially amount to setting the validation gate to some 

very low value as long as the robot is stationary, driving the speed needed to confuse the system to a value 

low enough so as to be irrelevant. 

As long as the system did not acquire new landmarks while moving (stopping to acquire new landmarks 

whenever necessary), the system would be much less foolable by motion in the environment. Given the 

density of landmarks extracted via SIFT (as demonstrated in Se, Lowe and Little’s paper), this should not 
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seriously impede the robot’s ability to move; a robot should be able to travel a considerable distance (both 

angular and linear) before needing to acquire new landmarks. While the system might still assign landmarks 

to an object in the environment which moved later on, temporarily confusing the SLAM system, the standard 

miss count thresholds might be good enough to minimize impact. 

4 Optical Flow for Place Recognition 

As a proof of concept the usefulness of optical flow in pruning landmarks associated with motion given a 

stationary camera, I built two simple systems which used Horn-Schunck optical flow to prune SIFT keypoint 

lists. The first system, whose results must be confirmed visually, was used to test if the idea was at all 

reasonable. The second system was an attempt to use optical-flow-based keypoint rejection to improve the 

performance of a naive place recognition system. 

4.1 Common Infrastructure 

Both systems were implemented in C (compiled with gcc 3.3.3 on Debian Linux) and made use of the binary 

version of David Lowe’s SIFT keypoint extractor (available from http://http://www.cs.ubc.ca/spider/lowe/) 

and Intel’s Open Source Computer Vision Library (OpenCV - version 0.9.4-1 from the opencv1 and opencv1-dev 

Debian unstable packages). OpenCV was used for simple image input, drawing and output, as well as for 

optical flow computation via the classical Horn-Schunck algorithm. 

Input MPEG movies were obtained either from the International Ray Tracing Competition (located 

at http://www.irtc.org) or from a Logitech Quickcam (used with the pwc driver) and the ffmpeg linux 

encoder program. Frame sequences in PPM format were extracted from each movie using transcode (a 

LINUX video stream processing tool) then converted to PGM format using ImageMagick’s mogrify tool for 

input into OpenCV and Lowe’s keypoint extractor. 

For both systems, the keypoint matching procedure used was based on David Lowe’s default keypoint 

matcher. It assumes a euclidean distance measure between keypoint descriptors2; the details of this measure 

are not important. The rough idea is that it compares the contents of the image around each match candidate 

to the keypoint to be matched, say m, and declares a match if the closest point to m is within some distance 

threshold and the next closest point is sufficiently far away from it. Note that this matching strategy includes 

no positional information; instead, it relies on the specificity of the keypoint descriptors. 

4.2 Simple Demonstration of Keypoint Rejection 

The first proof-of-concept system I constructed accepts a series of frames as input and produces the list of 

keypoints from the first frame which could be stably matched in each successive frame and were not located 

on an image region with substantial motion. The goal was to demonstrate that optical flow can reliably 

prune landmarks on moving bodies (if the camera is stationary) in a way that could be visually confirmed. 

2This is a measure of image content around the location of a keypoint; for details, see Lowe’s 2004 IJCV paper 
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The system executable is called simple. It accepts two command-line arguments. The first is the prefix 

for the filename of all the frames, and the second is the number of frames. Frame filenames must be of the 

form <prefix><6 digit number>.pgm; frame numbers must start at 0. For example, to run the system on 

the first 40 frames of a movie where the first frame is foo000000.pgm, the command line is simple foo 40. 

The matching criteria used by the system3 are as follows (with all counts initially 0): 

1.	 If a feature is matched at an image point with flow below the current threshold, set its counts to 0. 

2. If a feature is matched at an image point with flow above the current threshold, increment its moved 

count. If this exceeds the movement threshold, discard it. 

3. If a feature is not matched at all, increment its missed count.	 If this exceeds the miss threshold, discard 

it. 

Note that these thresholds are analogous to those in the SIFT landmark tracking system. The results of 

running this system on frames 500-550 of the “Pool Shark” entry to the IRTC - extracted from the included 

file poolshrk.mpg - for the first 39 frames is shown below: 

Courtesy of Neil Alexander. Used with permission. 

The image on the left shows all keypoints found in the first frame. The middle image shows those 

keypoints which survived given a flow threshold of 30 (essentially arbitrarily large flow), a moved threshold 

of 5 frames and a miss threshold of 10 frames. The image on the right shows those keypoints which survived 

given a flow threshold of 0.1 (essentially no flow). All landmarks on the moving person have been pruned. 

This serves as a useful proof of concept of the usefulness of an optical flow scheme for rejecting features 

on moving bodies. 

4.3 Use of Optical Flow in Place Recognition 

The second system I built tests the usefulness of optical flow for rejecting spurious features in the context 

of a naive place recognition system. It should be noted that the usefulness of flow in the context of SLAM 

is not at all measured by these results; a detailed explanation of my rationale is included below. 

The naive place recognition system, embodied in the executable placerec, operates on two input movies 

(specified as for the simple optical flow demo above). The first is the training movie, containing an image 

3In traditional bad-quality research coding style, these are set in the code; the current build of simple is set to an extremely 
forgiving optical flow threshold essentially corresponding to no use of flow. C’est la vie. 
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sequence from which features will be extracted defining the place. The second is the test movie which will 

be compared against the training sequence on a frame-by-frame basis. 

The place recognition system is extremely naive. It builds up a place definition by performing the same 

process as the simple demo above - that is, it defines a place to be a collection of keypoints extracted from 

the first place frame which were stably matched (and stationary) over the entire training sequence. For each 

test frame, it applies the following procedure: 

1. Extract the keypoints from the frame. 

2.	 For each keypoint, determine if it lies in a region with flow below a certain threshold. If so, keep it. 

3. Store the number of kept keypoints. 

4. For each kept keypoint, check if it matches a keypoint in the place definition.	 If so, increment the 

number of matches. 

5. If the percent of matches - that is, the percent of kept keypoints which matched a keypoint in the place 

- exceeds a threshold, declare the frame to be from the training place. 

The idea is straightforward enough: determine which keypoints correspond to “environmental” rather 

than “transient” features, and check how many of them match. It is naive chiefly in that it does not attempt 

to weight features according to how informative they are, and that it has a single simple threshold for 

declaring a match. 

Snapshots of the features selected by the system from a movie taken in an apartment in Somerville are 

shown below. The image on the top left shows the keypoints extracted from the first 30 frames of the training 

movie (dh-still). The image on the top right shows the features identified in frame 20 without optical flow 

pruning; note the features on the interloper. The image on the bottom left shows the optical flow generated 

by the interloper’s distracting dance moves, and the image on the bottom right shows the features identified 

given an optical flow threshold of 1.0. 
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Given a matching threshold of 20%, optical flow pruning improved recognition performance by roughly 

13% (from a 43% frame recognition rate to a 56% frame recognition rate on a sequence of 30 frames). The 

average percent of matches increaesd by roughly 2%. 

Optical flow only resulted in a small increase in performance primarily because the real-world test movies 

did not include enough motion distractors. A secondary factor was, again, the naive nature of the place 

recognition scheme. An HMM approach without flow would either be confused by features on moving objects 

(not present in all footage of a given place) or would assign those features low probability; optical flow could 

potentially prune those features entirely. 

The system was also tested on video footage from MIT’s Lobby 7 as well as other sequences from the same 

apartment in Somerville. For the majority of these scenes, place recognition performance in general was poor 

enough (that is, few enough keypoints matched unambiguously) that the system couldn’t afford to discard 

keypoints based on optical flow; the few points discarded due to errors in the optical flow computation were 

too costly4 . 

This poor performance was primarily due to two factors: 

1. The resolution of the movies produced by the Quickcam was 160x128; the SIFT feature count was 

fairly low to begin with. with. 

2.	 The camera placement compounded the low feature problem by including large homogeneous regions. 

These regions result in ambiguous matches (in the absence of position information as provided by 

stereopsis) which are rejected by the keypoint matching procedure I outlined above. 

4.4 Choice of Optical Flow Scheme 

It should be noted that it would have also been possible to use SIFT feature matching to approximate image 

motion instead of appealing to Horn-Schunck. This was not done initially as the idea did not occur to me. 

However, it is not clear that SIFT matching would have performed better. 

4Detailed results on these test movies was not tabulated, as these were not relevant to the main thrust of the project, and 
would not be too informative in any case given the simplicity of the place recognition approach. 
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The strength in SIFT lies in its feature density, permitting substantial matching errors such as omissions 

or mismatches to be dwarfed by the number of correct matches in recognition tasks. The precise location 

of individual SIFT features, however, is not terribly stable; changes in the overall image content such as 

the addition of new objects or small fluctuations in brightness can cause individual feaures to jump several 

pixels or vanish entirely. These errors are evident in the feature location movies I provided. 

In SIFT SLAM, the errors introduced by these jumps are minimized due to the use of 3D feature position 

in all matching tasks along with moderately stringent rejection thresholds. In a typical place recognition 

scenario, however, the camera position is not known; the only constraint is that the view from which a place 

is to be recognized overlaps substantially with training views. Geometric information is therefore unavailable 

and cannot be used to aid in the matching task. 

While I could have designed a special-purpose SIFT matching approach incorporating the particular 

constraints of optical flow in the place-recognition context, this did not seem particularly relevant to my 

overall goals. Horn-Schunck’s optical flow scheme, on the other hand, is formulated to incorporate substantial 

geometric information. 

Conclusions 

In this paper, I argued that validation gates impose fundamental limits on SLAM accuracy, es

pecially in the presence of motion. I suggested several techniques for addressing this issue as well as 

other error handling issues in SLAM, such as tuning thresholds to minimize uncertainty, detecting 

outlying displacements, and  pruning landmarks based on optical flow. Finally, I built and de

scribed two systems using optical flow to prune landmarks and tested them in the context of a naive 

approach to place recognition. 

The conjectures in this paper cannot be tested without a reimplmentation of the SIFT SLAM system. A 

successful reimplementation which was capable of navigating in noisy environments, such as Lobby 7 during 

lunchtime, would constitute a significant contribution in robotics. I have confidence that some combination 

of the ideas in this paper (or perhaps even an only slightly modified version of SIFT SLAM itself) would be 

able to achieve that goal, and I hope to have the chance to investigate this in the future. 
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