Informed Search

Slides adapted from: 6.034 Tomas Lozano Perez, Winston, David Hsu, and Russell and Norvig AIMA Brian C. Williams 16.410-13 September 23rd, 2015

Assignment

- Remember:
 - PS #2, due Today at midnight, Wednesday, September 23rd, 2015.
 - Problem Set #3, out Today, due Wednesday, September 30th, 2015.
 - —
- Reading:
 - Today: Informed search and exploration: AIMA Ch. 4.1-2, Ch. 25.4.
 Computing Shortest Paths: Cormen, Leiserson & Rivest, (opt.)
 "Introduction to Algorithms" Ch. 25.1-.2.
 - Wed: Activity Planning: [AIMA] Ch.10 & 11.

Motion planning

©2003 MapQuest.com, Inc.; ©2003 Navigation Technologies

Motion planning

Review: Roadmaps are an effective state space abstraction

Brian Williams, Fall 15

Constructing Road Maps

Configuration Spaces And Visibility Graphs

Cell Decompositions

Probabilistic Road Maps

9/23/15

Finding A Shortest Path

Input: <gr, w, S, G>, where

- gr is a (directed) graph <V,E> with
- weight function w: $VxV \rightarrow R$,
- $S \in V$ is the Start and $G \in V$ is the Goal.

Finding A Shortest Path

Input: <gr, w, **S**, **G**>, where

- gr is a (directed) graph <V,E> with
- weight function w: $VxV \rightarrow R$,
- $S \in V$ is the Start and $G \in V$ is the Goal.

Output:

A simple path $P = \langle v_1, v_2 \dots v_n \rangle$ from S to G, with the shortest path weight $g = \delta(S,G)$, and its corresponding weight.

Optimal Search

Problem: Find the path to the goal G with the shortest path length g.

Brian Williams, Fall 15

lliams, Fall 15

Classes of Search

Blind	Depth-First	Systematic exploration of whole tree
(uninformed)	Breadth-First	until the goal is found.
	Iterative-Deepening	
Best-first	Uniform-cost	Uses path "length" measure to
(informed)	Greedy	find "shortest" path.
	A *	
Bounding	Branch and Bound	Prunes suboptimal branches.
	Alpha/Beta	Prunes options that the adversary rules out.
Variants	Hill-Climbing (w backup)	
	Beam	
9/23/15	IDA* Brian Williams, Fall 15	

Classes of Search

Blind	Depth-First	Systematic exploration of whole tree
(uninformed)	Breadth-First	until the goal is found.
	Iterative-Deepening]
Best-first	Uniform-cost	Uses path "length" measure to
	Greedy	find "shortest" path.
	A *	

Does uniform cost search find the shortest path? Yes, Optimal

Uniform Cost edge cost path length S G Β Α 5 \bigcirc S C D 5 10 6 6 Β 9 (G 8 С Better path visited later.

Enumerates partial paths in order of increasing path length g.

Uniform Cost

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

Uniform Cost

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

Uniform Cost

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

- The shortest path from S to G is (G D A S).
- D is reached first using path (D S).

Suppose we expand only the first path that visits each vertex X?

9/23/15

Suppose we expand only the first path that visits each vertex X?

- The shortest path from S to G is (G D A S).
- D is reached first using path (D S).
- This prevents path (D A S) from being expanded.

Suppose we expand only the first path that visits each vertex X?

- The shortest path from S to G is (G D A S).
- D is reached first using path (D S).
- This prevents path (D A S) from being expanded.

Suppose we expanded only the first path that visits each vertex X?

⇒ Solution: Eliminate the Visited List.

- The shortest path from S to G is (G D A S).
- D is reached first using path (D S).
- This prevents path (D A S) from being expanded.
 - The suboptimal path (G D S) is returned.

9/23/15

Generic Search Algorithm

Let gr be a Graph. Let S be the start vertex in gr. Let Q be a list of simple partial paths in gr. Let G be a Goal vertex in gr.

- 1. Initialize Q with partial path (S) as only entry; set Visited = ();
- 2. If Q is empty, fail; Else, pick partial path N from Q;
- 3. If head(N) = G, return N; (we've reached the goal!)
- 4. (Otherwise) Remove N from Q;
- 5. Find all children of head(N) (its neighbors in gr) not in Visited and create all the one-step extensions of N to each child;
- 6. Add to Q all the extended paths;
- 7. Add children of head(N) to Visited;
- 8. Go to Step 2.

9/23/15

Uniform Cost Search Algorithm

Let gr be a weighted Graph.Let Q be a list of simple partial paths in gr.Let S be the start vertex in gr.Let G be a Goal vertex in gr.Let g be the path weight from S to N.

- 1. Initialize Q with partial path (S) as only entry; set Visited = ();
- 2. If Q is empty, fail; Else, pick partial path N from Q with best g;
- 3. If head(N) = G, return N; (we've reached the goal!)
- 4. (Otherwise) Remove N from Q;
- 5. Find all children of head(N) (its neighbors in Gr) not in Visited and create all the one-step extensions of N to each child;
- 6. Add to Q all the extended paths;
- 7. Add children of head(N) to Visited;
- 8. Go to Step 2.

Implementing the Search Strategies

Depth-first:

Pick first element of Q

Add path extensions to front of Q **Breadth-first**:

Pick first element of Q

Add path extensions to end of Q

Uniform-cost:

Pick first element of Q

Uses visited list

Uses visited list

No visited list

Add path extensions to Q in order of increasing path weight g.

Implement priority queue with a heap. For graph with *n* nodes:

- Keeping a queue sorted takes time $O(n^2)$.
- Heap implementation takes time $O(n \lg n)$.

Pick first element of Q; Insert path extensions, sorted by g.

Here we:

- Insert on queue in order of g.
- Remove first element of queue.

9/23/15

Pick first element of Q; Insert path extensions, sorted by g.

Here we:

- Insert on queue in order of g.
- Remove first element of queue.

9/23/15

Pick first element of Q; Insert path extensions, sorted by g.

Here we:

- Insert on queue in order of g.
- Remove first element of queue.

9/23/15

Pick first element of Q; Insert path extensions, sorted by g.

Can we stop as soon as the goal is enqueued ("visited")?

- Other paths to the goal that are shorter may not yet be enqueued.
- Only when a path is pulled off the Q are we guaranteed that no shorter path will be added.
- This assumes all edges are positive.

9/23/15

Implementing the Search Strategies

Depth-first:

Pick first element of Q

Add path extensions to front of Q **Breadth-first**:

Pick first element of Q

Add path extensions to end of Q

Uniform-cost:

Pick first element of Q

Uses visited list

Uses visited list

No visited list

Add path extensions to Q in increasing order of path weight g.

Best-first: (generalizes uniform-cost)

Pick first element of Q

No visited list

Add path extensions in increasing order of any cost function f.

9/23/15

Best-first Search Algorithm

Let gr be a Graph Let S be the start vertex in gr. Let f be a cost function on N. Let Q be a list of simple partial paths in gr. Let G be a Goal vertex in gr.

- 1. Initialize Q with partial path (S) as only entry;
- 2. If Q is empty, fail. Else, pick partial path N from Q with best f;
- 3. If head(N) = G, return N; (we've reached the goal!)
- 4. (Otherwise) Remove N from Q;
- 5. Find all children of head(N) (its neighbors in gr) and create all the one-step extensions of N to each child;
- 6. Add to Q all the extended paths;
- 7. Go to Step 2.

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Method	Worst Time	Worst Space	Guaranteed to find a path?	Optimal?
Depth-First	b ^m	b*m	Yes	No
Breadth-First	b ^{d+1}	b ^{d+1}	Yes	Yes for unit edge cost
Best-First	b ^{d+1}	b ^{d+1}	Yes	Yes if uniform cost or A* w admissible heuristic
Beam (beam width = k)				
Hill-Climbing (no backup)				
Hill-Climbing (backup)				

Worst case time is proportional to number of nodes visited Worst case space is proportional to maximal length of Q

9/23/15

Remarks

- UCS is a straightforward instance of BFS.
- UCS is complete and optimal.
- However, like BFS (or DFS), UCS does not consider the goal node during search and could be slow.

Classes of Search

Blind	Depth-First	Systematic exploration of whole tree	
(uninformed)	Breadth-First	until the goal is found.	
	Iterative-Deepening		
Best-first	Uniform-cost	Uses path "length" measure. Finds	
	Greedy	"shortest" path.	
	A *		

9/23/15

Greedy Search

Search in an order imposed by a heuristic function, measuring cost to go.

Heuristic function h – is a function of the current node n, not the partial path s to n.

- Estimated distance to goal h (n,G)
 - Example: straight-line distance in a road network.
- "Goodness" of a node h (n)
 - Example: elevation.
 - Foothills, plateaus and ridges are problematic.

Pick first element of Q; Insert path extensions, sorted by h.

Added paths in blue; heuristic value of head is in front.

Pick first element of Q; Insert path extensions, sorted by h.

Added paths in blue; heuristic value of head is in front.

Pick first element of Q; Insert path extensions, sorted by h.

Added paths in blue; heuristic value of head is in front.

Pick first element of Q; Insert path extensions, sorted by h.

Added paths in blue; heuristic value of head is in front.

Pick first element of Q; Insert path extensions, sorted by h.

Added paths in blue; heuristic value of head is in front.

Pick first element of Q; Insert path extensions, sorted by h.

Added paths in blue; heuristic value of head is in front.

Heuristic values in red Edge cost in green.

Did Greedy search produce the shortest path?

9/23/15

Remarks

- The performance of GS depends strongly on the quality of the heuristic.
 - With a good heuristic,
 GS reaches the goal quickly.
 - With a misleading heuristic,
 GS may "get stuck" and
 perform worse than UCS.
- GS is not optimal.

Classes of Search

Blind	Depth-First	Systematic exploration of whole tree	
(uninformed)	Breadth-First	until the goal is found.	
	Iterative-Deepening		
Best-first	Uniform-cost	Uses path "length" measure. Finds	
	Greedy	"shortest" path.	
	A *		

Comparison of UCS and GS

UCS

Think about the past: order the queue by g(v), the path cost from the start (cost-to-come).

• Optimal.

• Usually not fast.

GS

- Think about the future: order the queue by h(v), the estimated path cost to the goal (cost-to-go).
- Not optimal.
- Maybe fast.

Combining UCS and GS

• What if we put *g*(*v*) and *h*(*v*) together? Order the queue according to

f(v) = g(v) + h(v)

- g(v): cost-to-come (from the start to v).
- h(v): cost-to-go estimate (from v to the goal).
- f(v): estimated cost of the path (from the start to v and then to the goal).
 - Resulting can be both optimal and fast.

Remarks

- A search generalizes both UCS and GS.
 - Setting h(v)=0, we get UCS.
 - Ignoring g(v), we get GS.
- A search appears fast, but is not optimal. What is the problem?

A* Search

To make A search optimal,

- *h*(*v*) must always underestimate the distance to the goal.
- In other words, the heuristic must be **optimistic** (*admissible*):

$$h(v) \leq h^*(v)$$

Simple Optimal Search Algorithm BFS + Admissible Heuristic

Let gr be a GraphLet Q be a list of simple partial paths in grLet S be the start vertex in gr andLet G be a Goal vertex in gr.Let f = g + h be an admissible heuristic function.

- 1. Initialize Q with partial path (S) as only entry;
- 2. If Q is empty, fail. Else, use f to pick "best" partial path N from Q;
- 3. If head(N) = G, return N;
- 4. (Otherwise) Remove N from Q;
- 5. Find all the descendants of head(N) (its neighbors in Gr) and create all the one-step extensions of N to each descendant;
- 6. Add to Q all the extended paths;
- 7. Go to Step 2.

(we' ve reached the goal)

57

In the example, is h an admissible heuristic?

- A is ok.
- B is ok.
- C is ok.
- D is too big; needs to be ≤ 2 .
- S is too big; can always use 0 for start.

Brian Williams, Fall 15

A finds an optimal solution if h never over estimates.

- Search is called A*.
- h is called "admissible."

Heuristic Values of h in Red. Edge cost in Green.

Admissible heuristics for 8 puzzle?

What is the heuristic?

An underestimate of number of moves to the goal.

Examples:

- 1. Number of misplaced tiles (7)
- 2. Sum of Manhattan distance of each tile to its goal location (17)
 9/23/15 Brian Williams, Fall 15

Finding admissible heuristics

- Often domain-specific knowledge is required.
- Examples
 - h(v) = 0: this always works! However, it is not very useful, and in this case $A^* = UCS$.
 - h(v) = distance(v, g) when the vertices of the graphs are physical locations.
 - h(v) = ||v g||_p, when the vertices of the graph are points in a normed vector space.

Finding admissible heuristics

- Relaxation
 - Create a relaxed problem by ignoring some constraints in the original problem.
- Consistency
 - A heuristic function *h* is consistent if $h(u) \le w (e = (u, v)) + h(v), \quad \forall (u, v) \in E.$
 - A consistent heuristic function is admissible.

Benefits of heuristics

AIMA, Sect. 3.6, Fig. 3.29

Why the difference?

• h(v)=0 • $h(v)=h^*(v)$

A* optimality: intuition

If the heuristic function

- over-estimates the distance to the goal,
 - we eliminate the optimal solution and make a mistake that is irrecoverable.
- under-estimates the distance,
 - the search may be misled.
 - However, as the search continues, the cost of the sub-optimal path rises, and
 - we eventually recover from the mistake.

A* optimality: proof

- Assume that A* returns P, but w(P) > w* (w* is the optimal path weight/cost).
- Find the first unexpanded node on the optimal path P^* , call it n.
- f(n) > w(P), otherwise we would have expanded n.

•
$$f(n) = g(n) + h(n)$$
 by definition

- $= g^*(n) + h(n)$ because *n* is on the optimal path.
- $\leq g^*(n) + h^*(n)$ because *h* is admissible
- $= f^*(n) = W^*$ because h is admissible
- Hence $W^* \ge f(n) > W$, which is a contradiction.

Can We Prune Search Branches?

Property: Shortest Paths are extensions of Shortest Sub-Paths.

- Suppose path $P = P_1 \circ P_2$, from S to G, is shortest.
- Suppose P_2 , from U to G, is not.
- Then there exists P_2 ' from U to G that is shorter than P_2 .
- Hence $P' = P_1 \circ P_2$ is shorter than P.
- By contradiction, if P is a shortest, then P_2 is a shortest sub-path.

Can We Prune Search Branches?

Property: Shortest Paths are extensions of Shortest Sub-Paths.

Idea: when *shortest* path S to U is found, ignore other paths S to U.

- When BFS dequeues the first partial path with head node U, this path is *guaranteed to be the shortest path* from S to U.
- Given the first path to U, we don't need to extend other paths to U;
 delete them (expanded list).

Simple Optimal Search Algorithm How do we add dynamic programming?

Let gr be a Graph.Let Q be a list of simple partial paths in gr.Let S be the start vertex in gr.Let G be a Goal vertex in gr.Let f = g + h be an admissible heuristic function.

- 1. Initialize Q with partial path (S) as only entry;
- 2. If Q is empty, fail. Else, use f to pick the "best" partial path N from Q;
- 3. If head(N) = G, return N;
- 4. (Else) Remove N from Q;
- 5. Find all children of head(N) (its neighbors in gr) and create all the one-step extensions of N to each child;
- 6. Add to Q all the extended paths;
- 7. Go to Step 2.

(we' ve reached the goal)

A* Optimal Search Algorithm BFS + Dyn Prog + Admissible Heuristic

Let gr be a Graph Let Q be a list of simple partial paths in gr. Let S be the start vertex in gr. Let G be a Goal vertex in gr. Let f = g + h be an admissible heuristic function.

- Initialize Q with partial path (S) as only entry; set Expanded = (); 1.
- If Q is empty, fail. Else, use f to pick "best" partial path N from Q; 2.
- 3. If head(N) = G, return N;
- (Else) Remove N from Q; 4.
- 5. if head(N) is in Expanded, go to Step 2; otherwise, add head(N) to Expanded;
- Find all the children of head(N) (its neighbors in gr) not in Expanded, 6. and create all one-step extensions of N to each child;
- 7. Add to Q all the extended paths;
- Go to Step 2. 8.

(we' ve reached the goal)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Heuristic Values of g in Red Edge cost in Green

Added paths in blue; cost f at head of each path.

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Heuristic Values of g in Red Edge cost in Green

Added paths in blue; cost f at head of each path

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Heuristic Values of g in Red Edge cost in Green

Added paths in blue; cost f at head of each path

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Heuristic Values of g in Red Edge cost in Green

Added paths in blue; cost f at head of each path

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

			3
	Q	Expanded	
1	(95)		$\frac{2}{2} \frac{2}{3}$
2	(4 A S) (8 B S)	S	
3	(5 C A S) (7 D A S) (8 B S)	SA	
4	(7 B A S) (8 B S)	SAC	
5		SACD	B

Heuristic Values of g in Red Edge cost in Green

Added paths in blue; cost f at head of each path

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

	Q	Expanded	
1	(95)		$\frac{2}{2}$ $\frac{2}{2}$
2	(4 A S) (8 B S)	S	
3	(5 C A S) (7 D A S) (8 B S)	SA	
4	(7 B A S) (8 B S)	SAC	
5	(8 G D A S) (8 B S)	SACD	

Heuristic Values of g in Red Edge cost in Green

Added paths in blue; cost f at head of each path

Brian Williams, Fall 15

5

Expanded List can offer Exponential Saving

Enumerate all (sub)paths:

- For simple paths of length n through S states, $O(|S|^{2n+1})$.
- For simple paths up to length n, $O(|S|^{2n+2})$.

Enumerate all shortest (sub)paths:

- **Property:** Shortest paths are extensions of Shortest Sub-Paths.
- Algorithm: Dynamic Programming:
 - Compute shortest paths of length n from shortest (sub)paths of length n-1.

$$h^*(u) = \min_{(u,v)\in E} [w((u,v)) + h^*(v)].$$

• $O(n|S|^2)$ for shortest paths up to length n and |S| states.

Remarks

- The performance of A* search depends on the quality of the heuristic.
- A* search is optimal.

9/23/15

Appendices

- Bounding.
- Variants.
- More about Informed Search.
- Dynamic Programming.

Classes of Search

Blind	Depth-First	Systematic exploration of whole tree
(uninformed)	Breadth-First	until the goal is found.
	Iterative-Deepening	
Best-first	Uniform-cost	Uses path "length" measure. Finds
	Greedy	"shortest" path.
	A *	
Bounding	Branch and Bound Prunes suboptimal branches.	
	Alpha/Beta (L6)	Prunes options that the adversary rules out.

Branch and Bound

- A* generalizes best-first search.
- How do we generalize depth-first search?

Heuristic Values of g in Red Edge cost in Green

Brian Williams, Fall 15

Branch and Bound

Brian Williams, Fall 15

- Idea 1: Maintain the best solution found thus far (incumbent).
- Idea 2: Prune all subtrees worse than the incumbent.

Incumbent:

cost U = ∞, 8
path P = (), (S A D G)
$$\frac{9}{23}{15}$$

Heuristic Values of g in Red Edge cost in Green

Branch and Bound

- Idea 1: Maintain the best solution found thus far (incumbent).
- Idea 2: Prune all subtrees worse than the incumbent.
- Any search order allowed (DFS, Reverse-DFS, BFS, Hill w BT...).

Incumbent:

 $cost U = \infty, 10, 8$ path P = (), (S B G) (S A D G) P/23/15Brian Williams, Fall 15

 $\begin{array}{c} 2 \\ 2 \\ 2 \\ 3 \\ 2 \\ 4 \\ 1 \\ 0 \\ 5 \\ 5 \\ B \end{array}$

Heuristic Values of g in Red Edge cost in Green

Simple Optimal Search Using Branch and Bound

Let gr be a Graph.Let Q be a list of simple partial paths in gr.Let S be the start vertex in gr.Let G be a Goal vertex in gr.Let f = g + h be an admissible heuristic function.

U and P are the cost and path of the best solution thus far (Incumbent).

- 1. Initialize Q with partial path (S); Incumbent U = ∞ , P = ();
- 2. If Q is empty, return Incumbent U and P, Else, remove a partial path N from Q;
- 3. If f(N) >= U, Go to Step 2.
- 4. If head(N) = G, then U = f(N) and P = N (a better path to the goal)
- 5. (Else) Find all children of head(N) (its neighbors in gr) and create all the one-step extensions of N to each child.
- 6. Add to Q all the extended paths.
- 7. Go to Step 2.

Appendices

- Bounding.
- Variants.
- More about Informed Search.
- Dynamic Programming.

Classes of Search

Blind	Depth-First	Systematic exploration of whole tree
DIIIU	Deptii-Fiist	Systematic exploration of whole tree
(uninformed)	Breadth-First until the goal is found.	
	Iterative-Deepening	
Best-first	Uniform-cost	Uses path "length" measure. Finds
	Greedy	"shortest" path.
	A*	
Bounding	Branch and Bound	Prunes suboptimal branches.
	Alpha/Beta	Prunes options that the adversary rules out.
Variants	Hill-Climbing (w backup)	
	Beam	
	IDA*	
		Wiener Fall 15

Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)

Heuristic Values

A=2	C=1	S=10
B=3	D=4	G=0

Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)

A=2	C=1	S=10
B=3	D=4	G=0

Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)

Fails to find a path!

Heuristic Values

A=2	C=1	S=10
B=3	D=4	G=0

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Method	Worst Time	Worst Space	Guaranteed to find a path?	Optimal?
Depth-First	b ^m	b*m	Yes	No
Breadth-First	b ^{d+1}	b ^{d+1}	Yes	Yes for unit edge cost
Best-First	b ^{d+1}	b ^{d+1}	Yes	Yes if uniform cost or A* w admissible heuristic.
Beam (beam width = k)				
Hill-Climbing (no backup)	b*m	b	No	No
Hill-Climbing (backup)				

Worst case time is proportional to number of nodes visited Worst case space is proportional to maximal length of Q

9/23/15

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

	Q	
1	(195)	
2	(2 A S) (3 B S)	
3	(1 C A S) (4 D A S) (3 B S)	
4	(4 D A S) (3 B S)	
5		

A-Z	C-1	3-10
B=3	D=4	G=0

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

1 (19 S) 2 (2 A S) (3 B S) 3 (1 C A S) (4 D A S) (3 B S) 4 (4 D A S) (3 B S)		Q	
3 (1 C A S) (4 D A S) (3 B S)	1	(195)	
	2	(2 A S) (3 B S)	
4 (4 D A S) (3 B S)	3	(1 C A S) (4 D A S) (3 B S)	
	4	(4 Ð A S) (3 B S)	
5 (0 G D A S) (1 C A S) (3 B S)	5	(0 G D A S) (1 C A S) (3 B S)	

B=3 D=4 G=0

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

Q	
(195)	
(2 A S) (3 B S)	
(1 C A S) (4 D A S) (3 B S)	
(4 D A S) (3 B S)	
(0 G D A S) (1 C A S) (3 B S)	
	(19 S) (2 A S) (3 B S) (1 C A S) (4 D A S) (3 B S) (4 D A S) (3 B S)

A=2	C=1	S=10
B=3	D=4	G=0

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Method	Worst Time	Worst Space	Guaranteed to find a path?	Optimal?
Depth-First	b ^m	b*m	Yes	No
Breadth-First	b ^{d+1}	b ^{d+1}	Yes	Yes for unit edge cost
Best-First	b ^{d+1}	b ^{d+1}	Yes	Yes if uniform cost or A* w admissible heuristic.
Beam (beam width = k)				
Hill-Climbing (no backup)	b*m	b	No	No
Hill-Climbing (backup)				

Worst case time is proportional to number of nodes visited Worst case space is proportional to maximal length of Q

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Method	Worst Time	Worst Space	Guaranteed to find a path?	Optimal?
Depth-First	b ^m	b*m	Yes	No
Breadth-First	b ^{d+1}	b ^{d+1}	Yes	Yes for unit edge cost
Best-First	b ^{d+1}	b ^{d+1}	Yes	Yes if uniform cost or A* w admissible heuristic.
Beam (beam width = k)				
Hill-Climbing (no backup)	b*m	b	No	No
Hill-Climbing (backup)	b ^m	b*m	Yes	No

Worst case time is proportional to number of nodes visited Worst case space is proportional to maximal length of Q

Classes of Search

Blind	Depth-First	Systematic exploration of whole tree	
(uninformed)	Breadth-First	until the goal is found.	
	Iterative-Deepening		
Best-first	Uniform-cost	Uses path "length" measure. Finds	
	Greedy	"shortest" path.	
	A *		
Bounding	Branch and Bound	Prunes suboptimal branches	
	Alpha/Beta	Prunes options the adversary rules out	
Variants	Hill-Climbing (w backup)		
	Beam		
	IDA*		

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Idea: Incrementally expand the k best paths

Heuristic Values A=2 C=1 S=10 B=3 D=4 G=0

Added paths in blue; heuristic value of head is in front.

Let **k** = 2

9/23/15

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Idea: Incrementally expand the k best paths

Heuristic Values A=2 C=1 S=10 B=3 D=4 G=0

Added paths in blue; heuristic value of head is in front.

Let $\mathbf{k} = \mathbf{2}$

9/23/15

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Idea: Incrementally expand the k best paths

Heuristic Values A=2 C=1 S=10 B=3 D=4 G=0

Added paths in blue; heuristic value of head is in front.

9/23/15

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Idea: Incrementally expand the k best paths

Heuristic Values A=2 C=1 S=10 B=3 D=4 G=0

Added paths in blue; heuristic value of head is in front.

9/23/15

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Method	Worst Time	Worst Space	Guaranteed to find a path?	Optimal?
Depth-First	b ^m	b*m	Yes	No
Breadth-First	b ^{d+1}	b ^{d+1}	Yes	Yes for unit edge cost
Best-First	b ^{d+1}	b ^{d+1}	Yes	Yes if uniform cost or A* w admissible heuristic.
Beam (beam width = k)	k*b*m	k*b	No	No
Hill-Climbing (no backup)	b*m	b	No	No
Hill-Climbing (backup)	b ^m	b*m	Yes	No

Worst case time is proportional to number of nodes visited Worst case space is proportional to maximal length of Q

9/23/15

Appendices

- Bounding
- Variants
- More about Informed Search.
- Dynamic Programming.

Breadth-first search: an example

- Optimal (shortest) path <s,b,g>
- Sub-optimal path <s,a,d,g>, ...

9/23/15

Uniform-cost search: an example

Uniform-cost search

A trace of UCS execution

Brian Williams, Fall 15

A trace of UCS execution

Brian Williams, Fall 15

Greedy (best-first) search

A trace of GS execution

Brian Williams, Fall 15

A trace of GS execution

A search

A trace of A search execution

Brian Williams, Fall 15

A trace of A search execution

A trace of A* search execution

Brian Williams, Fall 15

A trace of A* search execution

Appendices

- Bounding
- Variants
- More about Informed Search.
- Dynamic Programming.

Dynamic programming

- Search algorithms work **towards** the goal. Hence the need for the heuristic *h*(*v*).
- What if we work backwards from the goal?
 h(G)=0, and h(v) becomes available when needed.
- Bellman's **dynamic programming** principle:

$$h^*(u) = \min_{(u,v)\in E} [w((u,v)) + h^*(v)].$$

– Shortest paths computed from smaller shortest paths.

Brian Williams, Fall 15

Comparison of A* and DP

A*

- Search towards the goal, guided by a heuristic.
- Fast if the heuristic is good.
- Find the optimal path from the start node to the goal node.
- Provide open-loop control.

Dynamic programming

- Work backwards from the goal.
- Slower.
- Find the optimal path from every node to the goal node.
- Provide closed-loop feedback control.

MIT OpenCourseWare https://ocw.mit.edu

16.412J / 6.834J Cognitive Robotics Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.