Homework 1: Preliminary Design of a Satellite Launcher

a) Velocity Calculations:

Conservation of Energy:

$\frac{v_{1}^{2}}{2}-\frac{\mu_{E}}{R_{E}}=\frac{v_{a}^{2}}{2}-\frac{\mu_{E}}{R_{E}}=\frac{v_{1}^{2}}{2}\left(\frac{R_{E}}{R_{C}} \cos \alpha\right)^{2}-\frac{\mu_{E}}{R_{E}}$
$\frac{1}{2} v_{1}^{2}\left(1-\frac{R_{E}^{2}}{R_{c}^{2}} \cos ^{2} \alpha\right)=\frac{\mu_{E}}{R_{E}}-\frac{\mu_{E}}{R_{C}}$
$v_{1}=\sqrt{\frac{2 \mu_{E}}{R_{E}}\left(\frac{1-\frac{R_{E}}{R_{C}}}{1-\frac{R_{E}^{2}}{R_{C}^{2}} \cos ^{2} \alpha}\right)}$

Substituting Values:

Using equation (2) to find v_{1} :
$v_{1}=\sqrt{\left(\frac{2 * 3.98 e 14}{6.37 e 5}\right)\left(\frac{1-637 / 687}{1-\left(637 / 687 \cos 20^{\circ}\right)^{2}}\right)}$
$v_{1}=6145 \frac{\mathrm{~m}}{\mathrm{~s}}$
Using equation (1) to find v_{a} :
$v_{a}=6145 \times \frac{637}{687} \cos 20^{\circ}$
$v_{a}=5354 \frac{\mathrm{~m}}{\mathrm{~s}}$

Point A: Start of ascent trajectory
Point B: Apogee of ascent trajectory

Conservation of Angular Momentum:

$v_{1} \cos \alpha R_{E}=v_{a} R_{c}$

Rearranging becomes:
$v_{a}=v_{1} \frac{R_{E}}{R_{c}} \cos \alpha$

Values, Constants, and Given Parameters:

$R_{E}=6370 \mathrm{~km}$
$R_{C}=6870 \mathrm{~km}$
$\mu_{E}=3.98 e 14 \frac{\mathrm{~m}^{3}}{\mathrm{~s}^{3}}$
$\alpha=20^{\circ}$

Orbital Velocity:

$v_{c}=\sqrt{\frac{\mu_{E}}{R_{C}}}$
$v_{c}=\sqrt{\frac{3.98 e 14}{6.87 e 6}}$
$v_{c}=7611 \frac{\mathrm{~m}}{\mathrm{~s}}$

b) Stage ΔV Calculations:

We allocate the full "apogee kick" to the third stage:
$\Delta V_{3}=v_{c}-v_{a}$ (4)
$\Delta V_{3}=7611 \frac{\mathrm{~m}}{\mathrm{~s}}-5354 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\Delta V_{3}=2257 \frac{\mathrm{~m}}{\mathrm{~s}}$
The initial ascent velocity v_{1} contains the velocity increments of the $1^{\text {st }}$ and $2^{\text {nd }}$ stages, plus the contribution from Earth rotation, minus the losses from gravity and drag:
$v_{1}=\Delta V_{1}+\Delta V_{2}+\omega_{E} R_{E} \cos \alpha-\Delta V_{G}-\Delta V_{D}$ (5)

By design:
$\Delta V_{1}=\Delta V_{2}=\frac{1}{2}\left(v_{1}-\omega_{E} R_{E} \cos \alpha+\Delta V_{G}+\Delta V_{D}\right)$

To solve:

$\omega_{E} R_{E} \cos \alpha=7.268 e(-5) \frac{r a d}{s} \times 6.37 e 6 m \times \cos 20^{\circ}$
$\omega_{E} R_{E} \cos \alpha=435 \frac{\mathrm{~m}}{\mathrm{~s}}$
To estimate the gravity loss ($1^{\text {st }}$ stage only) we assume:
$\sin \gamma=1-\frac{t}{t_{b 1}}$ (6)
($\sin \gamma$ is linear between $\gamma=1$ at $t=0$ and $\gamma=0$ at $t=t_{b 1}$)
Determining relations among parameters:
$t_{b 1}=\frac{M_{p 1}}{\dot{m_{1}}}=\frac{M_{p 1}}{\left(F_{1} / c\right)}=\frac{M_{p 1}}{M_{01} * 3 g} c$
$\frac{M_{p 1}}{M_{01}}=1-\frac{M_{f 1}}{M_{01}}=1-e^{-\frac{\Delta V_{1}}{c}}$
We need to make a preliminary guess at $\Delta \boldsymbol{V}_{\mathbf{1}}$. Take for now $\Delta V_{1}=3200 \frac{\mathrm{~m}}{\mathrm{~s}}$.
$\frac{M_{p 1}}{M_{01}}=1-e^{\frac{-3200}{9.8 * 270}}=0.7016$
$t_{b 1}=\frac{0.7016}{3 * 9.8}(9.8 * 270)=63.15 \mathrm{~s}$

Solving for $\Delta \boldsymbol{V}_{\boldsymbol{G}}$:

Making the substitution $z=\frac{t}{t_{b 1}}$
$\Delta V_{G}=\int_{0}^{t_{b 1}} g \sin \gamma d t=g t_{b 1} \int_{0}^{1}(1-z) d z=\frac{1}{2} g t_{b 1}(7)$

As a first approximation:

$\Delta V_{G}=\frac{1}{2} \times 9.8 \times 63.15$
$\Delta V_{G}=309 \frac{\mathrm{~m}}{\mathrm{~s}}$

We can now calculate a better ΔV_{1} :
$\Delta V_{1}=\frac{1}{2}(6145-435+309+150)$
$\Delta V_{1}=3085 \frac{\mathrm{~m}}{\mathrm{~s}}$

Refine other quantities:
$\frac{\mu_{p 1}}{\mu_{01}}=1-e^{-\frac{3085}{2646}}=0.6884$
$t_{b 1}=\frac{0.6884}{3} 270=61.95 \mathrm{~s}$
$\Delta V_{G}=\frac{1}{2} \times 9.8 \times 61.95=304 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\Delta V_{1}=3082 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\Delta V_{2}=\Delta V_{1}=3082 \frac{\mathrm{~m}}{\mathrm{~s}}$

These values are close enough to the first approximation, and we accept them as converged.

c) Calculation of Stage Masses:

For each stage:
$\frac{\mu_{\text {pay }, i}}{\mu_{0, i}}=e^{-\frac{\Delta V_{i}}{c}}-\varepsilon$
We apply this first to the $3^{\text {rd }}$ stage, for which $m_{\text {pay }, 3}=m_{\text {pay }}=3 \mathrm{~kg}$.
$M_{03}=\frac{3}{e^{-\frac{257}{2646}-0.1}}=\frac{3}{0.3361}=9.20 \mathrm{~kg}$
The structural mass of the third stage is then:
$M_{s 3}=0.1 M_{03}=0.92 \mathrm{~kg}$
The propellant mass is:
$M_{p 3}=9.20\left(1-e^{-\frac{2257}{2646}}\right)=5.28 \mathrm{~kg}$
As a check: $M_{s 3}+M_{p 3}+M_{\text {pay } 3}=0.92+5.28+3=9.20 \mathrm{~kg}=M_{03}$ (as it should)

For the second stage:
$M_{\text {pay } 2}=M_{03}=9.20 \mathrm{~kg}$
$M_{02}=\frac{9.20}{e^{-\frac{382}{2646}-0.1}}=\frac{9.20}{0.2120}=43.39 \mathrm{~kg}$
$M_{s 2}=0.1 \times 43.39=4.34 \mathrm{~kg}$
$M_{p 2}=43.39\left(1-e^{-\frac{3082}{2646}}\right)=29.85 \mathrm{~kg}$
Again, we check that: $M_{s 2}+M_{p 2}+M_{\text {pay2 }}=4.34+29.85+9.20=43.39 \mathrm{~kg}=M_{02}$

For the first stage:

$M_{\text {pay } 4}=M_{02}=43.49 \mathrm{~kg}$
$M_{01}=\frac{43.39}{e^{-\frac{382}{2646}-0.1}}=\frac{43.39}{0.2120}=204.67 \mathrm{~kg}$
$M_{S 1}=0.1 \times 204.67=20.47 \mathrm{~kg}$
$M_{p 1}=204.67\left(1-e^{-\frac{3082}{2646}}\right)=140.82 \mathrm{~kg}$
We verify that $M_{s 1}+M_{p 1}+M_{\text {pay } 1}=20.47+140.82+43.39=204.68 \mathrm{~kg}$

d) Thrusts and Firing Times:

$F_{1}=M_{01} \times 3 g=204.67 \times 3 \times 9.8=6,017 \mathrm{~N}$
$F_{2}=M_{02} \times 3 g=43.39 \times 3 \times 9.8=1,276 \mathrm{~N}$
$F_{3}=M_{03} \times 3 g=9.20 \times 3 \times 9.8=270 \mathrm{~N}$

Flow rates are then:
$\dot{m}_{1}=\frac{6017}{2646}=2.274 \frac{\mathrm{~kg}}{\mathrm{~s}} \times \times$
$\dot{m}_{2}=\frac{1276}{2646}=0.4822 \frac{\mathrm{~kg}}{\mathrm{~s}}$
$\dot{m}_{1}=\frac{270}{2646}=0.1020 \frac{\mathrm{~kg}}{\mathrm{~s}}$
Firing times are given by $\boldsymbol{t}_{\boldsymbol{b} i}=\frac{\boldsymbol{m}_{p i}}{\dot{\boldsymbol{m}}_{\boldsymbol{i}}}$
$t_{b 1}=\frac{140.82}{2.274}=61.93 \mathrm{~s}$
$t_{b 1}=\frac{29.85}{0.4822}=61.91 \mathrm{~s}$
$t_{b 1}=\frac{5.28}{0.1020}=51.76 \mathrm{~s}$

MIT OpenCourseWare
http://ocw.mit.edu

16.50 Introduction to Propulsion Systems

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

