Homework 2: Chemical vs. Electrical Thrusters

a) Chemical:

We start outside the sphere of influence (SOI) of Earth, and end outside the SOI of Mars, so no "escape" or "capture" ΔVs are involved. The whole motion is under the Sun's influence alone.

To enter the transfer orbit:

$$\Delta V_1 = v_{perihelion} - v_{c,Earth} = \sqrt{\frac{\mu_S}{r_E}} \left(\sqrt{\frac{2r_M}{r_E + r_M}} - 1 \right)$$
(1)

Known and calculated values:

$$\begin{split} \mu_S &= 1.327E20 \ \frac{m^3}{s^2} \\ r_E &= 1.496E11 \ m \\ r_M &= 1.5237 * r_E = 2.279E11 \ m \\ v_{c,Earth} &= 29,780 \ \frac{m}{s} \\ v_{c,Mars} &= 24,130 \ \frac{m}{s} \end{split}$$

Substituting values:

$$\Delta V_1 = 29,780 \left(\sqrt{\frac{2*1.5237}{2.5237} - 1} \right) = 2,945 \frac{m}{s}$$

To enter circular orbit near Mars:

$$\Delta V_2 = v_{c,Mars} - v_{apohelion} = \sqrt{\frac{\mu_S}{r_M}} \left(1 - \sqrt{\frac{2r_E}{r_E + r_M}} \right)$$
(2)
$$\Delta V_2 = 24,130 \left(1 - \sqrt{\frac{2}{2.5237}} \right) = 2,649 \frac{m}{s}$$

Total ΔV :

$$\Delta V = \Delta V_1 + \Delta V_2 = 5.549 \frac{m}{s}$$
 (Chemical)

Transfer duration:

The transfer time is ½ the orbital time in the transfer ellipse.

Semiaxis:
$$a = \frac{r_M + r_E}{2} = 1.8877E11 m$$

 $\Delta t = \frac{1}{2} * 2\pi * \frac{a^{3/2}}{\sqrt{\mu_S}}$ (3)
 $\Delta t = 2.237E7 s = \frac{2.237E7}{86400} = 259 days$
 $\frac{M_{pay}}{M_0} = e^{-\frac{\Delta V}{c}} - \varepsilon$ (4)
 $M_{pay} = 20,000 \left(e^{-\frac{5.547}{4,500}}\right) - 0.05 = 4,770 kg$

b) Electrical:

The propulsive ΔV is now:

 $\Delta V = v_{c,E} - v_{c,M} = 29,780 - 24,130 = 5,650 \frac{m}{s}$ (Electric Propulsion)

This is only slightly more than the chemical ΔV ; for transfers to larger radii, the difference is more noticeable.

For optimization of the low-thrust mission, define **non-dimensional variables**:

$$\mu = \frac{M_{pay}}{M_0} \quad (5)$$

$$\nu = \frac{\Delta V}{c} \quad (6)$$

$$\lambda = \frac{\alpha a_0 \Delta V}{2\eta} \quad (7)$$

$$\varepsilon = \frac{M_{str}}{M_0} \quad (8)$$

 $\alpha = 10 \frac{kg}{kW} = 0.01 \frac{kg}{W}$ is the specific mass (per unit power) of the power and propulsion equipment.

 a_0 is the initial acceleration.

Combining expressions:

$$\mu = e^{-\nu} - \frac{\lambda}{\nu} - \varepsilon \tag{9}$$

To find the best specific impulse c, we have differentiate with respect to v:

$$-e^{-\nu} + \frac{\lambda}{\nu^2} = 0$$

$$\lambda = v^2 e^{-v} \tag{10}$$

Substituting values:

$$\lambda = \frac{0.01 \times 5650}{2 \times 0.7} = 40.39a_0$$

For each value of a_0 we then need to solve (by trial and error) the equation:

$$40.39a_0 = v_{opt}^2 e^{-v_{opt}} \tag{11}$$

Once v_{opt} is known, we calculate:

$$c_{opt} = \frac{\Delta V}{v_{opt}} = \frac{5650}{v_{opt}}$$

The implied transfer time follows from:

$$\Delta t = \frac{\mu_{prop}}{\dot{m}} = \frac{M_0 \left(1 - e^{\frac{-\Delta V}{c}}\right)}{\frac{F}{c}} = \frac{c}{a_0} \left(1 - e^{-\frac{\Delta V}{c}}\right) \cong \frac{\Delta V}{a_0} \text{ if } \frac{\Delta V}{c} \ll c$$
(12)

The power per unit initial mass:

$$\frac{P}{M_0} = \frac{Fc/_{2\eta}}{M_0} = \frac{a_0 c}{2\eta}$$
(13)

Finally, the payload mass is:

$$\mu_{pay} = \mu_{opt} M_0 = M_0 \left(e^{-v_{opt}} - \frac{\lambda}{v_{opt}} - \varepsilon \right)$$
(14)

The results are tabulated below for a range of initial accelerations:

$a_0 \begin{bmatrix} m \\ s^2 \end{bmatrix}$	λ	v_{opt}	$c_{opt}[m/s]$	$\Delta t[days]$	$\frac{P}{M_0} \left[\frac{W}{kg} \right]$	$M_{pay}[kg]$	P[MW]
1E-4	4.039E-3	0.06567	86052	633.3	6.149	16498	0.123
2E-4	8.078E-3	0.09421	60004	322.2	8.572	15486	0.1714
				(chem)			
4E-4	0.01616	0.1361	41536	152.9	11.867	14082	0.2373
6E-4	0.02423	0.1694	33371	100.3	14.302	13024	0286

We see several important things here:

a) For any specific power ${}^{P}\!/_{M_{0}} \ge 10 \; {}^{W}\!/_{kg'}$ the transfer is <u>faster than chemical.</u>

b) The payload delivered is <u>3-4 times greater</u> than with chemical.

c) The specific impulse is in the range from 3,400s to 8,700s.

d) The required power is from 120-290 KW, possible with large solar arrays.

16.50 Introduction to Propulsion Systems Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.