Homework 6: Off-Design Performance of Small Turboprop Engine

a) At the end of climb, $z=6000 \mathrm{~m}$, we have $T_{0}=261 \mathrm{~K}\left(a_{0}=323.8 \mathrm{~m} / \mathrm{s}\right)$, and $P_{0}=4.86 * 10^{4} \mathrm{~Pa}$. Also, $M_{0}=0.6\left(\theta_{0}=1+0.2 * 0.6^{2}=1.072, T_{t 0}=\theta_{0} T_{0}=279.8 \mathrm{~K}\right)$. Finally, $P_{t 0}=P_{0} \theta_{0}^{\frac{\gamma}{\gamma-1}}=6.199 * 10^{4} \mathrm{~Pa}$.

Force balance along and transverse to the trajectory:

$L=W \cos \gamma$
$F=D+W \sin \gamma$

From equation (2), $F=\frac{L}{L / D}+W \sin \gamma=W\left(\frac{\cos \gamma}{L / D}+\sin \gamma\right)$
We are given $W=2000 * 9.8=19,600 N, \gamma=20^{\circ}, L / D=15$, so
$F=19.600\left(\frac{\cos 20^{\circ}}{15}+\sin 20^{\circ}\right)=7,931 N$
b) Since $T_{t 4}=1200 \mathrm{~K}$, we have $\theta_{t}=\frac{1200}{261}=4.598$.

The compressor ratio is chosen for maximum thrust, so
$\tau_{c}=\frac{\sqrt{\theta_{t}}}{\theta_{0}}=\frac{\sqrt{9.598}}{1.072}=2.0003$
$T_{t 3}=T_{t 0} \tau_{c}=559.7 \mathrm{~K}$
$\pi_{c}=\tau_{c} \frac{\gamma}{\gamma-1}=(2.0003)^{3.5}=11.32$
$P_{t 3}=P_{t 0} \pi_{c}=7.017 * 10^{5} \mathrm{~Pa}$

From the shaft power balance:
$\tau_{t}=1-\frac{\tau_{c}-1}{\theta_{t}} \theta_{0}=1-\frac{1.0003}{4.598}(1.072)=0.7668$
$\pi_{t}=\tau_{t} \frac{\gamma}{\gamma-1}=0.3948$
From these results:
$T_{t 5}=\tau_{t} T_{t 4}=0.7668 * 1200=920.2 \mathrm{~K}$
$P_{t 5}=\pi_{t} P_{t 4}=\pi_{t} P_{t 3}=0.3948 * 7.017 * 10^{5}=2.770 * 10^{5} \mathrm{~Pa}$
$T_{t 7}=T_{t 5}$
$P_{t 7}=P_{t 5}$
c) To calculate the air flow rate \dot{m} we need the value of $\frac{F}{\dot{m} a_{0}}$. We assume here $\underline{\text { matched }}$ exhaust conditions and use:
$\frac{F}{\dot{m} a_{0}}=\sqrt{\frac{2}{\gamma-1}\left(\theta_{0} \tau_{c} \tau_{t}-1\right) \frac{\theta_{t}}{\theta_{0} \tau_{c}}}-M_{0}$
$\frac{F}{\dot{m} a_{0}}=\sqrt{5(1.072 * 2000 * 0.7668-1) \frac{4.598}{1.072 * 2000}}-0.6=2.0278$
$\dot{m}=\frac{F}{2.0278 a_{0}}=\frac{7931}{2.0278 * 323.8}=12.078 \mathrm{~kg} / \mathrm{s}$
d) The general flow rate expression is:
$\dot{m}=\bar{m} \Gamma \frac{P_{t} A}{\sqrt{R T_{t}}}$

We have:
$\Gamma=\sqrt{\gamma}\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}=0.6339$
$R=\frac{8.314}{0.0289}=287 \mathrm{~J} / \mathrm{kg} * \mathrm{~K}$

Applying this at the choked stations 4 and 7:

$A_{4}=\dot{m} \frac{\sqrt{R T_{t 4}}}{\Gamma P_{t 4}}$
$A_{4}=12.08 * \frac{\sqrt{287 * 1200}}{0.6339 * 7.017 * 10^{5}}=0.01594 \mathrm{~m}^{2}$
$A_{7}=\dot{m} \frac{\sqrt{R T_{t 7}}}{\Gamma P_{t 7}}$
$A_{7}=12.08 * \frac{\sqrt{287 * 920.2}}{0.6339 * 2.77 * 10^{5}}=0.03535 \mathrm{~m}^{2}$
$D_{7}=\sqrt{\frac{4}{\pi} A_{7}}=0.2122 \mathrm{~m}^{2}$

For station 2:

$\bar{m}_{2}=M_{2}\left(\frac{\frac{\gamma+1}{2}}{1+\frac{\gamma-1}{2} M_{2}^{2}}\right)^{\frac{\gamma+1}{2(\gamma-1)}}=0.4\left(\frac{1.2}{1+0.2 * 0.4^{2}}\right)^{3}=0.6289$
$A_{2}=\frac{\dot{m}}{\bar{m}_{2}} \frac{\sqrt{R T_{t 0}}}{\Gamma P_{t 0}}=\frac{12.08}{0.6289} \frac{\sqrt{287 * 279.8}}{0.6339 * 6.166 * 10^{4}}=0.1385 \mathrm{~m}^{2}$
$D_{2}=\sqrt{\frac{4}{\pi} A_{2}}=0.420 \mathrm{~m}$
e) The combustion energy balance gives:
$f=\frac{c_{p}\left(T_{t 4}-T_{t 3}\right)}{h}$
$f=\frac{1005(1200-559.7)}{43 * 10^{6}}=0.01497$

Therefore:
$\dot{m}_{f}=f \dot{m}=0.01497 * 12.08=0.1808 \mathrm{~kg} / \mathrm{s}$
The specific impulse is:
$I=\frac{F}{\dot{m}_{f} g}=\frac{7.931}{0.1808 * 9.8}=4.477 \mathrm{~s}$
f) The flight speed is $u_{0}=M_{0} a_{0}=0.6 * 323.3=194.3 \mathrm{~m} / \mathrm{s}$. The exhaust velocity is then:
$u_{e}=u_{0}+\frac{F}{\dot{m}}=194.3+\frac{7931}{12.08}=850.9 \mathrm{~m} / \mathrm{s}$

The propulsive efficiency is then:
$\eta_{p}=\frac{2 u_{0}}{u_{0}+u_{e}}=\frac{2 * 194.3}{194.3 * 850.9}=0.3718$
This result is not a very high propulsive efficiency.

The overall efficiency follows from the specific impulse:
$\eta_{\text {ov }}=\frac{g u_{0}}{h} I=\frac{9.8 * 194.3}{43 * 10^{6}} 4477=0.1983$

The thermodynamic efficiency is then:
$\eta_{t h}=\frac{\eta_{o v}}{\eta_{p}}=0.5331$

Note: The thermodynamic efficiency can also be calculated directly using equation (24):
$\eta_{t h}=\frac{\frac{1}{\bar{m}} \dot{m}\left(u_{e}^{2}-u_{0}^{2}\right)}{\dot{m}_{f} h}$

Compressor Working Line

When conditions change, the nondimensional flow \bar{m}_{2} and the compressor ratios τ_{c}, π_{c} both change, but they do so in a coordinated way. As explained in lecture 19, we must have:
$\bar{m}_{2}\left(M_{2}\right)=\frac{A_{4}}{A_{2}} \pi_{c} \sqrt{\frac{1-\tau_{t}}{\pi_{c} \frac{\gamma-1}{\gamma}-1}}$
Where τ_{t} remains constant. Often \bar{m}_{2} is reported as the relative flow, normalized by its design value:
$\bar{m}_{2 D}=\frac{A_{4}}{A_{2}}\left(\pi_{c}\right)_{D} \sqrt{\frac{1-\tau_{t}}{\pi_{C D} \frac{\gamma-1}{\gamma}-1}}$
Dividing equations (25)/(26):
$\frac{\bar{m}_{2}}{\bar{m}_{2 D}}=\frac{\pi_{c}}{\pi_{c D}} \sqrt{\frac{\pi_{c D} \frac{\gamma-1}{\gamma}-1}{\pi_{c} \frac{\gamma-1}{\gamma}-1}}$
Some values are tabulated below, using our result $\pi_{c D}=11.32$:

π_{c}	4	6	8	10	11.32	12	14
$\bar{m}_{2} / \bar{m}_{2 D}$	0.5070	0.6484	0.7847	0.9159	1	1.0426	1.1659

Concept Questions

1) If F is doubled, at the same $M_{0}, T_{0}, M_{2}, T_{t 4}$, we will still have the same $\tau_{c}, \tau_{t}, \pi_{c}, \pi_{t}, \bar{m}_{2}$ and the $\underline{\text { same }} T_{t 3}, T_{t 4}, T_{t 5}, P_{t 3}, P_{t 4}, P_{t 5}, I, \eta_{p}, \eta_{t h}, \eta_{o v}$. But the mass flow rate would be doubled, as would the flow areas A_{2}, A_{4}, A_{7}.
2) If $T_{t 4}$ is raised to 1500 K , just about everything changes. We would get more thrust per unit flow $\frac{F}{\dot{m} a_{0}}$, and hence less flow \dot{m} and smaller cross-sections. The changes in Iand in the efficiencies are less clear. The thermodynamic efficiency is that of a Brayton cycle with a pressure ratio $\left(\theta_{0} \tau_{c}\right)^{\frac{\gamma}{\gamma-1}}$, and so $\eta_{t h}=1-\frac{1}{\theta_{0} \tau_{c}}=1-\frac{1}{\sqrt{\theta_{t}}}$ This means a higher $\eta_{t h}$ when $T_{t 4}$ increases. But, since a higher θ_{t}
implies a higher $\frac{F}{\dot{m} a_{0}}$, the propulsive efficiency η_{p} will be $\underline{\text { less. }} \eta_{p}=\frac{2}{2+\left(\frac{F / \dot{m} a_{0}}{M_{0}}\right)}$. The product of the two $\eta_{o v}$ also turns out to be less at higher M_{0}, although this is more difficult to see.

So increasing $T_{t 4}$ gives more thrust, hence a smaller engine, but at the cost of higher fuel consumption.

MIT OpenCourseWare
http://ocw.mit.edu

16.50 Introduction to Propulsion Systems

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

