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Subject: Introduction to Component Matching and Off-Design Operation 
 
At this point it is well to reflect on which of the many parameters we have introduced 
(like M2, τc, τt, ϑt, f, etc.) are free for the pilot to control, and what the inter-relationships 
are that determine the others. This connectivity is in part mechanical, like the shaft power 
balance (Eq. 9 of Lecture 18), but it also comes via flow continuity among components. 
This topic is usually relegated to the very end of the study of engine components, where 
it is introduced under the rubric of “Component Matching” (Lecture 31 in our NOTES). 
We find it advantageous to move most of it forward to this point. 
 
The price to pay for the insight to be gained is the need to introduce one assumption at 
this point (to be justified later). This is the assumption that the stators leading to the 
turbine (the “turbine nozzles” are choked. This means the mass flow rate can be written 
as 
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Where A4 is the effective flow area of these nozzles. But in addition, we have already 
shown in Lect. 18 that the exhaust nozzle is also choked. Passing the same flow through 
two choked apertures in series imposes very strong constraints on the flow conditions. 
The flow can be expressed at the throat as 
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and equating (1) and (2) , 
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For a non-afterburning turbojet, Pt7 ! Pt 5 and Tt 7 = Tt5  
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and if the turbine is ideal, ! t = " t # $1  , and we obtain 
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This is a strong result: as long as both, the turbine nozzles and the exhaust throat remain 
choked, the turbine maintains the same pressure and temperature ratios (same operating 
point), regardless of fuel flow, Mach number, altitude, etc.  We can now trace the 
variability of other quantities: 
 
 (1) Compressor ratios. In terms of ϑ = Tt4/Tto, Eq. (9) of Lecture 18 gives 
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Thus τc and πc do vary, but only as a function of the single quantity ϑ:  
τc = τc (ϑ) for a given engine. 
 
(2) Mach number at compressor inlet (M2). The flow at compressor inlet is 
generally subsonic, so we express the flow rate there as 
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The dimensionless flow function m 2(M2)  increases to a maximum of 1 when  

M2 = 1, then decreases again.  
  Equating (8) to (1), we see that 
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For an ideal combustor, Pt4 = P #

t 3 , and so, using ! c = " /# $1
c ,  Tt 2 = Tto, 
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Since ! c = ! c (" ) , we see now that M2 = M2(! ) as well (the supersonic solution for M2 
given m 2 can be disregarded). 
 
(3) Dimensionless air flow. Returning to (8), we see that the dimensionless mass flow 
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(flow rate as a fraction of what the compressor would pass if its inlet were choked), is 
once more a unique function of ϑ. This is very useful for scaling from one operating 
condition to another. 
 
(4) Fuel/air ratio. The combustor heat balance is 
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and using Tt 2 = Tto and f ! m ˙ f /m ˙ , 
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so the quantity f /Tto  is another function of ϑ alone. But notice that f itself does depend 
on Mo at a fixed To. 
 
(5)Throat pressure (normalized) 
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which is yet another function of ϑ alone. 
 
(6) Thrust (matched nozzle). We already have Eq. (10) of Lecture 18, but it is sometimes 
better to normalize thrust by the total free-stream pressure on the compressor inlet, PtoA2, 
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which is known from flight conditions. If Pe = Po (variable nozzle, or just design point for 
a fixed nozzle), 
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For ue, we go back to Lecture 18, Eq. (7): 
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Here the quantities m 2 and ! c  depend on ϑ only, but we can see that the Mach number 

" #1Mo appears explicitly (as Mo and as ! o =1+ M 2

2 o ), so the normalized thrust !2 

depends on both ϑ and Mo. 
 
(7) Thrust (truncated sonic nozzle). We now have me = m7 =1, but Pe = P7 > Po, so 
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u 2so that e ! P= "# t  depends on ϑ alone. Since we also know that m 2 and e  are 
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functions of ϑ alone, it makes sense to separate out Eq. (16) in the form  
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Once again, the normalized thrust depends on both, ϑ and Mo, but the structure is fairly 
simple, and in particular, the portion !*

2 of !2 (neglecting the incoming momentum and 
the external pressure) is a function of ϑ alone. This portion can be very easily scaled 
between conditions, and the rest can be subtracted separately. 
 
A note on ϑ: the near-constancy of the engine operating point  
 
Two important points in the flight envelope of an aircraft engine are (a) Take-off 
conditions (Mo ! 0.25, To ! 290K) , and (b) End-of-climb conditions (M0≈0.85, 
T0≈220K. The total temperatures are Tto = 290(1+ 0.2 ! 0.252) = 294K  (take-off) and 

Tto = 220(1+ 0.2 ! 0.852) = 252K  (end of climb). Suppose the engine is dimensioned for 
end-of-climb, which is common, and that the peak temperature Tt4, which will have to be 
maintained for many hours of cruise, is selected at a conservative Tt4 = 1600K. We then 

1600have ! = = 6.35 at this condition. If we now decided to maintain ϑ = 6.35 also for 
252

take-off, we would need then Tt4 = 6.35 ! 294 =1868K. While this is too high for long-
term operation (creep, corrosion), it may be acceptable for the few minutes per cycle that 
the engine will be at take-off maximum power. 
 
As a second example, consider a commercial jet in a long cruise. As the fuel is consumed 
and the weight decreases, so must the lift L =1/2!0u

2
0 AwcL . Now, the lift coefficient will 

be kept close to that for optimum L/D, and the Mach number M0 is unlikely to change 
much, as it will stay just below the transonic drag peak, and so u 2

0  will be proportional to 
T0 due to the speed of sound variation. Together with the density part of lift, we can see 
that the ambient pressure p0 must be decreasing in proportion to the airplane’s weight, 
i.e., the plane must be climbing gradually. Turning now to the forward force balance, 
given a constant L/D, the drag, and hence the engine thrust, must also be decreasing in 
time in the same proportion as the ambient pressure. Therefore, from Eq. (14), the 
nondimensional thrust !2(" ,M0) will remain constant, and since M0 does too, the peak 
temperature ratio θ will also remain constant, and with it all the important ratios like τc, 
M2, etc. 
 
In other words, ϑ may not vary much among (important) flight conditions, and the engine 
will be operating at a fixed nondimensional condition (constant compression ratio, 
nondimensional flow, compressor inlet Mach number, etc.). But of course, the 
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dimensional quantities (flow rate, peak pressure, etc.) will be different, depending on po, 
etc. 
 

(8) The Operating Line in the compressor map. Compressor performance is 
typically presented as a map of ! c vs. m 2 , with lines of constant normalized 
rotational speed ! and "c  superimposed. The details are the subject of later 
Lectures, but the general shape is as shown below. (The flow and speed variables 
are renormalized by the “Design” values): 
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Actually the “nominal operating line” shown in the figure is not a property of the 
compressor, but rather of the rest of the engine. We can calculate this line with the 
information we have now, before deciding what particular compressor to use. From Eqs. 
(11) and (9), 
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and from the shaft power balance (Eq. 7), 
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where we recall that ! t  is fixed for a fixed geometry. Eliminating ϑ, 

Kerrebrock, Jack L. (1992). Aircraft Engines and Gas Turbines (2nd Edition).
MIT Press, © Massachusetts Institute of Technology. Used with permission.
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which is the equation for the operating line (written in reverse). 
 
If the compressor is already available, we see from (22) that we can adjust the nozzle area 
A4 to place this line in a “good” place on the map, i.e., below the stall line and through 
the best efficiency points. 

TSince m 2 depends on ! = t4 , varying T
T t4 moves the operating point along the operating 
to

line, and this is what the pilot does with the throttle stick to power the engine up or down. 
At each selected ϑ, the engine settles to a ! c , a M2, a (normalized) rotation rate, etc. 
 
Effects of Mach number 
 
If we look at operation of a given engine at different flight Mach numbers, we may try to 
maintain the same non-dimensional conditions throughout, which, as we have seen, can 
be done by maintaining for example a constant compressor inlet Mach, M2. This, in turn 

Tguarantees a constant ! = t4 , but since now we have a varying Mach number, so that 
Tto

Tt0 increases with M0, we may find that the turbine inlet temperature Tt4 needs to become 
too high at the higher Mach numbers. For example, Tt4 would have to be 1.8 times higher 
at M0=2.0 than at static conditions, and 2.25 times at M0=2.5. 
 
A more reasonable assumption is that the ratio θt=Tt4/T0 can be maintained the same at all 
Mach numbers, since at least in the stratosphere, T0 is almost invariant. The compressor 

1 " t (1# ! )temperature ratio now follows from ! c = + t , where the numerator is a 
" 0

constant; thus, τc will be lowered as the Mach number increases, but less strongly than 
would be required to maintain maximum thrust per unit flow (! c = " t /" 0). The flow 
parameter m 2 is now determined by Eq. (9), i.e. compressor-turbine flow matching, and 
then the compressor-inlet Mach number from Eq. (8). Once these parameters are known, 
we can use Eq. (15) to calculate the normalized thrust; since we are interested in the 
effect of Mach number, it makes sense to re-normalize thrust by p0A2,  or 
F #
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A numerical example 
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We take now θt=7, or Tt4=1540K in the stratosphere. The geometry of the engine must 
have been specified in advance. This means that the turbine temperature ratio (Eq. 5) is a 
known fixed number. For the example, we select τt such as to obtain maximum thrust at 
M0=1. From the shaft balance equation,  

#     ! t =1" 0  
# t (! c "1)

and we put now θ0=1.2 and τc=√7/1.2=2.2048 (at M0=1). This fixes τt=0.7935. 
Similarly, the area ratio A4/A2 must have been fixed, and we select it here so as to obtain 
at M0=1 a compressor-face Mach number M2=0.5, which, from Eq. (8) implies 
m 2=0.7464. From Eq. (9) then,  

! "    m 2 = 0.7464( c )3.5 0  
2.2048 1.2

and the rest of the steps are as described above. The table below summarizes the results: 
 
M0 0 1 2 2.5 
θ0 1 1.2 1.8 2.25 
τc 2.4458 2.2048 1.8032 1.6426 
m 2 0.9796 0.7464 0.4523 0.3648 
M2 0.8486 0.5 0.2737 0.2172 
!2 2.9117 1.5531 0.5795 0.3503 
F/(p0A2) 2.9117 2.9399 4.534 5.985 
 
We find that at a fixed altitude the thrust is nearly constant up to Mach 1, then it increases 
rapidly. Actually the increase is less rapid than this simple model predicts, because of 
losses in the supersonic flow in the engine inlet. 
Finally to this point, we should note that an aircraft normally flies at increasing altitude as 
the Mach Number increases, so that dynamic pressure !p0M

2
0  is roughly constant.  In this 

case the change in F between Mach 1 and Mach 2 is actually a thrust reduction. 
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