
16.50 
  
Subjects: Critical speeds and vibration 
 
Critical Speeds  
 
As noted in the last lecture, gas turbine engines are unusual structures in that a large 
fraction of their mass is rotating at high speed.  Thus, vibration and dynamics have 
always been a serious issue with them. What is intended here is that the physical 
phenomena of principal importance be conveyed by study of a set of simplified models.  
 
Schematically, we can think of the rotating system as a mass on a flexible shaft, 
mounted on flexible supports. If most of the mass resides in the rotor and the part of the 
shat adjacent to it, we can combine the two flexibilities as two springs in series with a 
combined stiffness which tends to restore the rotor’s center to the axis from whatever 
direction it is deflected into. More complex models, with additional degrees of freedom, 
would be needed if the bearings and the parts of the shaft near them had a significant 
mass. We still retain the simpler formulation, but will allow the rotating mass to be 
mounted eccentrically, to study the loads this can generate. 
 
The schematic below shows the situation. The center of mass C has coordinates (x,y), 
and the geometrical shaft center, also assumed to be its elastic center, is at S. The center 
of mass is offset by a distance e from S, and rotates with the shaft at the angular rate ω. 
There is an elastic restoring force –k e directed from S to O, as well as a viscous 
damping  force, normally provided by an oil squeeze film damper between the shaft 
and the bearing. This damping force is proportional to the rate of change of that part of 
OS that comes from the bearing displacement, but since we ignore the mass of the 
bearings, that distance is a fixed fraction of OS itself (depending on the ratio of shaft to 
bearing stiffness), and we model it as –b (de/dt). 
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We can now write a pair of equations of motion, one for x, the other for y: 
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M˙ x ̇ = !kxS ! bx ˙ S   
M˙ y ̇ = !kyS ! by ˙ S

where 
   xS = x ! ecos" t; yS = y ! esin" t  
 
It is actually more convenient to work with a complex displacement z=x+iy, so that a 
single complex equation is needed: 
 
    M!z!= !kzS ! bz!S; zS = z ! e exp(i" t)  
 
Introducing the “natural frequency” !n = k /M and the friction parameter n = b /M , 
and eliminating zS, we obtain 
 
    ˙ z ̇ + nz ˙ + ! 2

n z = e(! 2
n + in!)ei!t  

 
The general solution to this equation consists of the homogeneous part alone, with two 
arbitrary constants determined by initial conditions, plus the forced, or “particular” 
solution, determined by the right hand side. The homogeneous solution is a 
superposition of damped sines and cosines at the natural frequency ω Because of the 
damping, it will disappear some time after a transient event, leaving o

n
nly
. 

 the forced 
solution, which is proportional to exp(iωt), like the right hand side of the equation.  
We concentrate here on the forced solution only (the steady state). Putting z=B exp(iωt) 
and substituting into the governing equation, we can solve for B, and find 
 

! 2
n + n!i    z = e i!t

! 2 2 e  
n "! + n!i

 

   zS = z ! e exp(i"t) " 2

= !e i"t

" 2  
! 2 e

n " + n"i
 
The force on the supports is, in complex form, 
 
    F = Fx + iFy = !kzS ! bz!S = M!z!= !M" 2z  
 
where the last form can be directly rationalized as the result of “centrifugating” the 
center of mass. It is, of course, a rotating force (around O), proportional to exp(iωt). The 
amplitude of this force is obtained from the expression for z: 
 

    F = M! 2 ! 4 2

e n + (n!n!)
(! 2

n "! 2 2  
) + (n!n!)
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and the phase can also be written down, although we omit it here. 
 

The solutions for the amplitude of z (normalized by the eccentricity e) or for F 
(normalized by Mω2e) are shown below, together with the phase information: 

     
Some important points are:  

1)  With no damping,  z/e → ∞  and F/e → ∞ for ω → ωn (resonance 
condition). 

  2)  Damping limits the resonant amplitudes to finite values. 
  3)  The system can be run above ωn with a flexible shaft or support, in 
which case the  mass rotates about C for very high speed (x and y tend to zero). 
 
Now let us ask how the bearing stiffness and damping influence the forces on the 
structure.  
 

a) At “subcritical” speeds, namely, ω2<<ω 2
n , F !"M# 2e exp(i#t), and the forces die 

out as the square of the speed, as could be expected. Notice this condition might not 
mean a very low rotational speed, if the shaft and the bearings are stiff enough, or 
the rotor is light enough, to produce a very high natural frequency (this is unusual 
in jet engines, though). 
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(b)  At supercritical speeds, ω2>>ω 2
n , and with relatively weak damping,  

# 2

z !"e n
2 ! 0, i.e., the center of mass tends to remain stationary, with the shaft 

#
rotating about it.  The force then tends to F ! M" 2

n e = ke , a constant elastic force 
towards the center of mass (but a rotating force, that transmits to the supports and 
causes vibrations). This is the normal condition for most engines at design speed.  
 
Elaborate procedures are followed to reduce eccentricities to a minimum, but with 
engine wear, they are difficult to maintain near zero. Their effects can be mitigated 
by (a) Staying away from operation at a speed equal to the natural (“critical”) 
frequency. (b) If normal operation is at supercritical speed, crossing the critical range 
as quickly as possible, and (c) Providing as much damping as practical with 
squeeze-film or other dampers. 
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