
16.50 
 
Subjects discussed: Aircraft Engine Noise : Principles; Regulations 
 
Noise generation in the neighborhoods of busy airports has been a serious problem 
since the advent of the jet-powered transport, in the late 1950's.  Although piston-
engined aircraft had caused some concerns prior to that, it was the turbojet-powered 
first generation jets (707, Comet, DC-8) with their jet noise that led to wide public 
concern, and to regulations by some airport authorities.  With the continuing growth 
of airline travel, the problem has continued to expand, leading to rules promulgated 
by the FAA that limit the noise that any individual aircraft can make at each of 3 
measuring stations. 
 

 

 
 Noise is the human ear's response to pressure fluctuations in time, at the ear 
of the observer.  As such it has both physical and psychological aspects.  Thus, one 
person's music can be another person's noise.  There is general agreement for 
example that the exhaust noise of motorcycles is annoying, but the biker will not 
agree.  We will from this point on avoid the psychological and concentrate on the 
physical aspects of aircraft noise, without meaning to imply that the latter is more 
important. 
 
Noise is transmitted from the source (aircraft) to the observer by sound waves.  So 
let us begin with a brief review of sound propagation. 
 
 Conservation of mass 
 
     D!
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 Conservation of momentum 
 
     Du 

! = "#p      (2) 
Dt

 
Suppose the velocity and pressure to be the sum of a large steady component and a 
small time-varying one 
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and further suppose that !   u 0 = 0 .  Then to first order in small quantities (1) and (2) 
become 
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In the absence of heat conduction and viscosity, ρ' and p' are related isentropically, 
i.e. 
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It follows that 
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where a0 is the speed of sound. 
 
So in 1a 
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Now taking    !  (1a) - !.(2a)  we have 
! t

 
1 ! 2 p'    2 2 " #2p'= 0      (6) 
a0 !t

 
In one dimension (for a plane wave) 
 

1 ! 2 p' ! 2p    " = 0  
a20 !t 2 !x

 
This is a Wave Equation, satisfied in general by solutions of the form p' = p'(x ± aot), 
so that p' is constant for x = ± aot. Thus the solution for a plane wave would be of the 
form 
    p ! = P cosk(x " a0t)  
Excitation 
 
We can now ask how such waves are generated in an engine. Some of the main 
sound sources are schematized below: 
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Elementary sources. It is useful to examine the simplest acoustic sources, which are 
all configurations with an imposed pressure fluctuation or an imposed wall 
vibration. The first in a systematic series of such sources are shown below: 
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 (a) Monopoles 
 
Suppose now the perturbation is due to a pulsating sphere, whose radius 
oscillates by some small !r0  at a frequency ω. This sets up spherically symmetric 
pressure field that oscillates at ω as well, and propagates as a sound wave train.  
In spherical coordinates, the wave equation is 
 

1 ! 2p " 1 !    =
a 2 2 2 (r2 !p " )    (7) 
0 !t r !r !r

 
We expect acoustic energy to be conserved, and since at least the compression 
part of this energy varies as p'2 , let us try a solution of the Monopole form: 

    p'= P(r0 )cosk(r ! a
r ot)    (8) 

It can be seen by direct substitution that this does satisfy the wave equation. The 

quantity k= /a  is called the wave number,  and the wavelength  is 2"ω 0 ! = = 2 a" 0 . 
k #

 
The velocity field (purely radial) can be calculated from (4) 
 

!u' 1 !p'    r = "       (4a) 
!t #o !r

 
and from (8), after integrating in time, 
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The acoustic power flux (energy crossing unit area per unit time, averaged over 
one cycle) is the average of the work done by p !:  
 

1 r 2

   ! = # " P 2 % ( 
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2r 2The net acoustic radiated power is P 2 P
m = 4"r # = 2" o , which is seen to be 

!oao
independent of r, as it should. The monopole power radiated is independent of 
wave number k = 2! /" , and only dependent on pressure amplitude. A possible 
physical implementation of a monopole source is a pulsating jet, such as 
produced by a pulse-jet (like that in the V-1 missile), or by the oscillations during 
an engine surge. 
 
(b) Dipoles  
 
Consider next two monopoles of equal strength P operating in counter-phase to 
each other, and spaced a small distance d along the x-direction. If an observer is 
located at a distance r from one of them, and at an angle ϑ from the x direction, 
its distance to the other will be (approximately r + dcos! . Then the pressure p'  
at the observer’s location will vary as 
 

  p ' Pr= o cosk (r ! aot ) Pr! o cosk (r + d cos" ! a (11) 
r r + d cos 0t )   

"
 
Expanding the second term and assuming d to be much smaller than both, the 
wavelength (≈1/k) and the observation distance r, 
 

  p ' Pr= o (k  d cos! )sin k (r " aot ) + (d cos# )Pr0 cosk(r " a t)  (11b) 
r r r 0

of the two terms in (11b), the first has the 1/r dependence that will ensure energy 
flux conservation at all distances, while the second will decay faster and will be 
negligible for distances r>>1/k; this is the “near-field” dipole sound, which can 
be important near the source. We concentrate here on the “far-field” contribution 
(first term in (11b)). 
 
The calculation of the far-field power flux is as before, remembering that it is still 
a radial flux, even though there is an angular dependence in ϑ. So we still have 
the first equality in Eq. (10), and the calculation is straightforward. We obtain 
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cos2!This flux has now a 2  distribution (no sound at 90° to the dipole axis, 
r

maximum along the dipole axis). The total radiated power is 
2 (Pr k d)2

  Pd = 2! # !
"( $ )r2 sin$ d$ = ! o

o
r,    (13) 
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Aside from the 1  factor, this differs from P
3 m, the monopole power, by the factor 

(kd)2 = (2!d /")2 , which is, by assumption a small number, and becomes smaller 
the longer the wavelength is (or the lower the frequency ! = ao /k).  
 
An important observation is that a physical dipole requires application of an 
external oscillatory force. A possible physical implementation of the radiating 
dipole is any vibrating compact object, such as a fan or a turbine blade. The 
dipole axis is then the direction of vibratory motion, and the surrounding air is 
forced back and forth as it would between the hypothetical two monopoles in 
counter-phase. 
 
 
 
 
(c) Quadrupoles 
 
Strongly turbulent flows, such as an engine exhaust jet, are known to be strong 
sources of acoustic radiation. If the jet is steady and subsonic, there is no 
possibility of macroscopic monopole (expansion/contraction) type of radiation, 
and since there is no external force in the body of the fluid, no dipole sources 
either. However, there are fluctuating pressures at different points (turbulent 
eddies), exerting forces on each other with zero net on the larger scale. The 
lowest order “multipole” with these features is the Quadrupole, which can be 
built up from two dipoles with a common axis, and separated by 2d and with 
opposing directions. 
 
The detailed derivation is similar to that for a dipole. We calculate (in the far 
field) 

   p' Pr= !2 o (k dcos" )2 cosk(r ! aot)     (14) 
r

   
and for the acoustic power flux, 
 

" Pr % 2 (kdcos( )4! = 2$ o '      (15) 
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which integrates for all directions to a radiated power 
 

8 (Pr   P = ! o)2(kd)4
q       (16) 
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The quadrupole radiator pattern is more sharply directional along the axis 
(cos4! ) , and is an additional (kd)2  weaker than the dipole, with an even stronger 
rate of increase with frequency. 
 
It should be noted that the collinear-dipole type of quadrupole is not the only 
one possible, but all of them share the (kd)4 feature (although with different 
angular patterns). 
 
 
 
 

 

  

 
 

7



MIT OpenCourseWare
http://ocw.mit.edu

16.50 Introduction to Propulsion Systems
Spring 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



