
Data Analysis

16.621 March 13, 2003

Experiment Step

- Experiment produces "raw data"
 - In measured units (volts, seconds, lbs,)
 - Organization determined by recording method (notebook, tabular form, database,....)
- Take data early to check-out experiment
- Do some "quick data reduction/analysis" during experiment to see if results look ok.
- Goal: Assure data set is complete and all information is collected while experiment is still set up.

Largely a recording process.

Data Reduction Step

- Convert and normalize or nondimensionalize raw data to "meaningful variables" (temperature, time of flight, force coefficients,...)
- Statistical analysis as appropriate (next class)
- Error analysis as appropriate
- Goal: assure data is "valid" before interpretation

Largely a deductive process.

Data Interpretation Step

- Interaction/Iteration of four sub elements
 - Graphical analysis: helps visualize data to see trends, patterns, relationships to theory,...
 - Compare with theory or other data to determine agreement or differences (both important)
 - Incorporate knowledge learned in classes or from experience
 - Extract findings which represent the *knowledge* generated from the experiment
- Implementation tailored to each project.
- This step is where "value" is added by researcher

A highly inductive process!

Error Analysis - A General Approach

- During the design of the experiment
- 1 Identify all possible sources of error:
 - Experiment set up: facility effects, environmental effects, human subjects,
 - Measurement system: velocity, temperature,...
- 2 Estimate possible severity of each source
 - Discuss with advisor.
- 3 For those that are considered "important", identify mitigation strategies.
 - Experimental design and/or test protocols (e.g. repeat tests)
- 4 Plan for quantitative analysis of reduced data
 - Quantitative analysis relies on math model of the system
 - Not possible for all situations: human factors tests, s/w studies
 - Often good for measurement systems: pitot probe, strain gauge,...
 - Sometimes quoted by manufacturer or supplier

Keep the end goal in mind!

Error Analysis - A General Approach II

- During the experiment
 - Execute experiment according to protocols
 - Record notes in lab notebook
 - Check for mistakes
- During data reduction
 - Calculate error bars for measurements
 - Check for outlier points
- During data interpretation/reporting
 - Consider errors when interpreting data
 - Assure findings are beyond uncertainty of experiment
 - Display error bars in way that aids in understanding findings

Goal: To "qualify" the accuracy of your data to support findings.

Exercise

- Make a sketch of a figure that you might put in your final report which displays your experimental data in a way that can be used to assess your hypothesis.
- What questions do you have about data reduction? For example
 - Statistical analysis
 - Graphical analysis
 - Error analysis
- Turn in your sketch and questions.