Introduction to the Airline Planning Process

Dr. Peter Belobaba

16.75/1.234 Airline Management

February 8, 2006

Airline Terminology and Measures

- Airline Demand

RPM = Revenue Passenger Mile

- One paying passenger transported 1 mile

Yield = Revenue per RPM

- Average fare paid by passengers, per mile flown
- Airline Supply

ASM = Available Seat Mile

- One aircraft seat flown 1 mile

Unit Cost = Operating Expense per ASM ("CASM")

- Average operating cost per unit of output
- Average Load Factor = RPM / ASM
- Unit Revenue = RevenuelASM ("RASM")

Example: Airline Measures

- A 200-seat aircraft flies 1000 miles, with 140 passengers:

RPM $=140$ passengers $\times 1000$ miles $=140,000$
ASM $=200$ seats $X 1000$ miles $=200,000$

- Assume total revenue $=\mathbf{\$ 1 6 , 0 0 0}$; total operating expense $=\mathbf{\$ 1 5 , 0 0 0}$:

Yield $=\$ 16,000 / 140,000$ RPM $=\$ 0.114$ per RPM
Unit Cost $=\$ 15,000 / 200,000$ ASM $=\$ 0.075$ per ASM
Unit Revenue $=\$ 16,000 / 200,000$ ASM $=\$ 0.080$ per ASM

- Average Load Factor = RPM / ASM

ALF $=140,000 / 200,000=70.0 \%$

- For single flight, also defined as passengers / seats

US Airline Traffic 2001-2004

US Airline Capacity 2001-2004

US Airline Losses Almost \$40 Billion From 2001 to 2005

Load Factors are at Record Levels

LOAD FACTOR
4 Qtr Moving Average

Source: ATA data

US Domestic Unit Revenues

PRASM (Φ) -- Mainline Domestic
12 Months Ended

Source: ATA data

Airline Supply Terminology

- Flight Leg (or "flight sector" or "flight segment")
- Non-stop operation of an aircraft between A and B, with associated departure and arrival times
- Flight
- One or more flight legs operated consecutively by a single aircraft (usually) and labeled with a single flight number (usually)
- NW945 is a two-leg flight BOS-MSP-SEA operated with a B757
- Route
- Consecutive links in a network served by single flight numbers
- NW operates 2 flights per day on one-stop route BOS-MSP-SEA
- Passenger Paths or Itineraries
- Combination of flight legs chosen by passengers in an O-D market to complete a journey (e.g., BOS-SEA via connection at DTW)
MIT
UOZ!І0Н ӘШ!L

uo!s!̣əa jo sədK_L

Airline Planning Decisions

1. FLEET PLANNING: What aircraft to acquire/retire, when and how many?
2. ROUTE EVALUATION: What network structure to operate and city-pairs to be served?
3. SCHEDULE DEVELOPMENT: How often, at what times and with which aircraft on each route?
4. PRICING: What products, fares and restrictions for each O-D market?
5. REVENUE MANAGEMENT: How many bookings to accept, by type of fare, to maximize revenue on each flight and over the network?

1. FLEET PLANNING

- Long-term strategic decision for an airline:
- Affects financial position, operating costs, and especially the ability to serve specific routes.
- Huge capital investment with lasting impacts:
- US \$40-60 million for narrow-body aircraft
- \$200+ million for wide-body long-range 747-400
- Depreciation impacts last 10-15 years
- Some aircraft have been operated economically for 30+ years

Fleet Planning Decisions

- Fleet planning is an optimal staging problem:
- Number and type of aircraft required
- Timing of deliveries and retirement of existing fleet
- Tremendous uncertainty about future conditions
- Aircraft evaluation criteria for airlines include:
- Technical and performance characteristics
- Economics of operations and revenue generation
- Marketing and environmental issues
- Political and international trade concerns

2. ROUTE PLANNING

- Given a fleet, selection of routes to be flown
- Economic considerations dominate :
- Forecasts of potential demand and revenues
- Airline's market share of total forecast demand
- Opportunity cost of using aircraft on this route
- Network implications for costs, revenues and "profit"
- Practical considerations just as important:
- Aircraft with adequate range and proper capacity
- Performance and operating cost characteristics
- Operational constraints and aircraft/crew rotation issues
- Regulations, bilaterals, and limited airport slots

"Route Profitability Models"

- OR models designed to perform such route evaluations, used by some airlines:
- Demand, cost and revenue forecasts for specific route, perhaps for multiple years into the future
- Select routes to maximize profits, given set of candidate routes and estimated demands
- Subject to fleet and capacity constraints
- Assessments should be based on total network impacts
- Built on highly simplified assumptions:
- Profit estimates entirely dependent on accuracy of demand estimates and market share models
- Ability to integrate competitive effects is limited

3. SCHEDULE DEVELOPMENT

- Involves several interrelated decisions, which to date have not been fully integrated:

Frequency Planning: Number of departures to be offered on each route, non-stop versus multi-stop
Timetable Development: Flight departure and arrival times, including connections at airline hubs
Fleet Assignment: Aircraft type for each flight, based on demand and operating cost estimates
Aircraft Rotation Planning: Links consecutive flights to ensure balanced aircraft flows on the network.

OR Models in Airline Scheduling

- Airline scheduling problems have received most operations research (OR) attention
- Use of schedule optimization models has led to impressive profit gains in:
- Aircraft rotations; fleet assignment
- Crew rotations; maintenance scheduling
- Current focus is on "solving" larger problems:
- Timetable optimization is still not feasible--too many dimensions and constraints

4. PRICING DECISIONS

- "Differential pricing" by airlines is universal:
- Classes of service (First, Business, Coach)
- Different "fare products" within the coach cabin, with different restrictions, at different prices
- Virtually every airline in the world offers multiple price points (even low-fare carriers with "simplified" fare structures)
- Economic trade-off in pricing decisions:
- Stimulation of new demand; increased market share for airline
- Diversion of existing demand to lower fares; reduced revenues
- Recent pricing difficulties of network airlines due in part to greater diversion of revenues than stimulation of demand

Pricing Models

- Pricing theory has not kept pace with airline competitive pricing practices
- Difficult to estimate price elasticity, willingness to pay, potential for stimulation and diversion
- No practical tools for airlines to determine "optimal" prices
- Some airlines are now implementing "Pricing Decision Support Systems"
- Primarily monitoring of price changes
- Little competitive modeling of pricing impacts
- Dominant practice is to match low fares to fill planes and retain market share.

5. REVENUE MANAGEMENT

- "Inventory control" for airlines:
- Given a scheduled flight, capacity and prices, how many bookings to accept by fare type
- Objective is to maximize revenue -- fill each seat with highest possible revenue
- Computerized RM systems used by airlines to increase revenues by 4-6\%:
- Generate forecasts by flight date and fare class
- Optimize seat allocations to different fare classes
- Overbooking models to minimize costs of denied boardings and "spoilage"

Example of Third Generation RM System

Integrated Airline Planning Models

- As described, current practice is to perform scheduling, pricing and RM sequentially.
- Integrated models would jointly optimize schedules, capacity, prices, and seat inventories:
- Better feedback from pricing and RM systems can affect optimal choice of schedule and aircraft
- Better choice of schedule and capacity can reduce need for excessive discounting and "fare wars"

The Ultimate Challenge

- Joint optimization and planning is a big challenge, both theoretically and practically:

- Few airlines have "corporate databases" with consistent and detailed demand/cost data
- Research is still required to identify models that can capture dynamics and competitive behaviors
- Organizational coordination within airlines and willingness to accept large-scale decision tool
- Might never be possible to integrate all subtleties of airline planning decisions into a useful tool

