Route Planning and Evaluation

16.75J/1.234J Airline Management

Dr. Peter P. Belobaba

March 15, 2006

Route Planning and Evaluation

- Given a fleet plan, the process of route planning and evaluation involves the selection of routes to be flown
- Economic considerations dominate route evaluation:
- Forecasts of potential passenger and cargo demand (as well as expected revenues) for planned route are critical to evaluations
- Origin-destination market demand is primary source of demand and revenues for a given route, but far from the only source
- In large airline hub networks, traffic flow support to the new route from connecting flights can make it profitable
- Airline's market share of total forecast demand for the new route depends on existence of current and expected future competition
- The fundamental economic criterion for a planned route is potential for incremental profitability in the short run, given the opportunity cost of taking aircraft from another route

Route Evaluation Issues

- Practical considerations can be just as important:
- Technical capability to serve a new route depends on availability of aircraft with adequate range and proper capacity
- Performance and operating cost characteristics of available aircraft in the airline's fleet determine economic profitability
- If the route involves a new destination, additional costs of airport facilities, staff re-location, and sales offices must be considered
- Regulations, bilaterals, and limited airport slots can impose constraints on new route operations, to the point of unprofitability
- Strategic considerations can overlook lack of route profit:
- Longer term competitive and market presence benefits of entering a new route even if it is expected to be unprofitable in short run

Route Planning Models

- Route planning requires a detailed evaluation approach:
- Demand, cost and revenue forecasts required for specific route, perhaps for multiple years into the future
- Assumed market share of total demand based on models of passenger choice of different airline and schedule options
- Depends to a large extent on presence and expected response of competitors to route entry
- "Route Profitability Models"
- Computer models designed to perform such route evaluations, but ability to integrate competitive effects is limited
- Profit estimates entirely dependent on assumptions used

Review: Basic Airline Hub Economics

- Routing flights and passengers through a hub is more profitable for the airline if:

COST SAVINGS from operating fewer flights with larger aircraft and more passengers per flight

IS GREATER THAN
REVENUE LOSS from passengers who reject connecting service and choose a non-stop flight instead, if it exists

- Passenger preference for multiple connecting departures vs. 1 or 2 non-stops per day:
- Large multiple hub network operated by Delta, for example, provides over a dozen daily connections Boston-San Diego

Hub Impacts on Route Planning

- New routes to smaller spoke cities become much easier to justify in an established hub network:
- An airline needs only 1 or 2 passengers per flight to each of 30+ connecting destinations to make a 100-seat aircraft "profitable"
- However, such incremental analysis leads to a tendency to overlook potential displacement of other traffic on connecting legs
- Same "incremental" logic makes it more difficult to stop service to a potentially unprofitable destination, which provides connecting traffic support to other flights
- Difficult to justify a new non-stop service to by-pass the hub, as it might steal traffic from hub flights:
- However, large number of departures in a connecting market can allow airline to build market share and perhaps introduce a nonstop flight supported by many connecting opportunities

Recent Trends: Hub Strengthening

- Despite forecasts of more non-stop flights, a trend toward bigger and stronger hubs has re-emerged:
- Largest US and European airlines have cut virtually all flights that do not originate or terminate at their hubs
- Several smaller, weaker US hubs have been shut down
- Factors that continue to reinforce hub growth:
- Liberalized bilateral agreements have allowed airlines to fly even low-density international routes from their hubs (e.g., CVG-MUC)
- Small regional jets are being used to increase frequency of service to small spoke cities, not to over-fly the hub with non-stop service
- Airline alliances focus on linkages between major hub networks
- With recent economic downturn, importance of hub operations will likely continue

Measuring Route "Profitability"

- Airline costs are driven by fleet and flight schedule
- Fleet drives fixed costs (capital costs) and variable cost rates (fuel burn rates, maintenance rates)
- Flight schedule drives utilization and thus variable costs
- Costs are incurred on a flight basis and on a network basis
- Airline revenues are driven by O-D markets
- Prices are set by competitive considerations or by regulation
- Revenues are earned on a passenger itinerary basis
- Scheduling decisions are often made at the route and flight departure level
- Airline managers must decide which flight legs to remove so that other flight legs can be added

Approaches to Flight Profit Measurement

- Ideally, add/change/remove a flight leg and then measure the profitability given that the rest of the network can be re-optimized
- Captures interactive or network effects of both costs and revenues
- Not easy as it requires a good model of the entire operation
- Another approach - allocate all costs and revenues on a flight leg basis and then treat each leg as being independent of the rest of the network
- Allocation schemes are always subjective
- Does not capture network effects, very important in most cases
- But, much easier to conceptualize

Sample Network (Baldanza Article)

Flight-Level Profitability

- Incremental Revenues
- Incremental Costs
- Measures of Profitability
- Network Contributions and Costs

Incremental Revenues (SYR-OMA)

- Two sources of incremental passenger revenues
- Passengers boarding in SYR and deplaning in OMA (Local Revenue)
- Passengers boarding in SYR and connecting in OMA to LAX or SFO (Connecting Revenue)
- Connecting O-D revenues allocated to each flight leg
- Proration methodology needed to split O\&D fare into component parts (e.g. mileage, ratio of full fares)
- Or, assign total connecting O-D fare to flight leg being analyzed
- Implicit assumption is that all revenues from a flight segment will be lost if the segment is cancelled
- Reality is that airline might recapture some of this revenue

Incremental Costs (SYR-OMA)

- Variable Operating Costs
- Aircraft Ownership Costs
- Equivalent leasing costs based on duration of flight segment
- Overhead and Non-Operating Costs
- Equivalent share of other fixed costs based on duration of flight segment
- Fully allocated flight costs equals the variable operating costs plus the aircraft ownership costs plus the allocated overhead and non-operating costs.

Network Contributions and Costs

- Contributions to Rest of Network
- Additional revenue on other segments due to presence of SYR-OMA segment
- Costs to Rest of Network
- Cost of processing SYR connecting passengers at OMA
- Incremental cost of having more passengers on the connecting segments out of OMA
- Opportunity Costs of selling seats beyond OMA, which could have been occupied by passengers from other O-D markets (known as "network displacement costs")

Revenues \& Costs for Sample Network

- Local SYR-OMA O-D revenue:
- Connex prorated to SYR-OMA:
- Connex proration to other legs:
- Variable operating costs:
- Aircraft ownership costs:
- Allocated overhead \& non-operating costs:
- Network variable costs:
- Network opportunity costs:
\$6,000
\$1,500
\$4,000
\$4,500
\$2,000
\$1,500
\$ 700
\$ 500

SYR-OMA Profitability for Sample Network

- Variable Leg Profitability with Network Contribution:
\$6,300
- Variable Leg Profitability with Network Contribution and Opportunity Costs:
\$5,800
- Variable Leg Profitability with Aircraft Ownership and Network Contribution:
\$4,300
- Variable Leg Profitability with Network Contribution, Aircraft Ownership and Opportunity Costs:

SYR-OMA Profitability for Sample Network

- Fully Allocated Profitability with Network Contribution:
\$2,800
- Fully Allocated Profitability with Network Contribution and Opportunity Costs:
\$2,300
- Variable Leg Profitability:
\$3,000
- Variable Leg Profitability with Aircraft Ownership:
\$1,000
- Fully Allocated Leg Profitability:

What is the right profitability measure?

Decision Process	Relevant Profitability Measure	Comments
Short-term scheduling optimization	Variable with network contribution	In the very short term, ownership and overhead costs are fixed. Flight and market level need the network contribution to be useful.
Middle-term scheduling optimization	Variable plus ownership with network contribution	In the middle term, aircraft may be fungible.

