Route Planning and Evaluation

16.75J/1.234J Airline Management Dr. Peter P. Belobaba March 15, 2006

Route Planning and Evaluation

- Given a fleet plan, the process of route planning and evaluation involves the selection of routes to be flown
- Economic considerations dominate route evaluation:
 - Forecasts of potential passenger and cargo demand (as well as expected revenues) for planned route are critical to evaluations
 - Origin-destination market demand is primary source of demand and revenues for a given route, but far from the only source
 - In large airline hub networks, traffic flow support to the new route from connecting flights can make it profitable
 - Airline's market share of total forecast demand for the new route depends on existence of current and expected future competition
 - The fundamental economic criterion for a planned route is potential for <u>incremental</u> profitability in the short run, given the opportunity cost of taking aircraft from another route

Route Evaluation Issues

- Practical considerations can be just as important:
 - Technical capability to serve a new route depends on availability of aircraft with adequate range and proper capacity
 - Performance and operating cost characteristics of available aircraft in the airline's fleet determine economic profitability
 - If the route involves a new destination, additional costs of airport facilities, staff re-location, and sales offices must be considered
 - Regulations, bilaterals, and limited airport slots can impose constraints on new route operations, to the point of unprofitability
- Strategic considerations can overlook lack of route profit:
 - Longer term competitive and market presence benefits of entering a new route even if it is expected to be unprofitable in short run

Route Planning Models

Route planning requires a detailed evaluation approach:

- Demand, cost and revenue forecasts required for specific route, perhaps for multiple years into the future
- Assumed market share of total demand based on models of passenger choice of different airline and schedule options
- Depends to a large extent on presence and expected response of competitors to route entry

"Route Profitability Models"

- Computer models designed to perform such route evaluations, but ability to integrate competitive effects is limited
- Profit estimates entirely dependent on assumptions used

Review: Basic Airline Hub Economics

 Routing flights and passengers through a hub is more profitable for the airline if:

COST SAVINGS from operating fewer flights with larger aircraft and more passengers per flight

IS GREATER THAN

REVENUE LOSS from passengers who reject connecting service and choose a non-stop flight instead, if it exists

- Passenger preference for multiple connecting departures vs. 1 or 2 non-stops per day:
 - Large multiple hub network operated by Delta, for example, provides over a dozen daily connections Boston-San Diego

Hub Impacts on Route Planning

- New routes to smaller spoke cities become much easier to justify in an established hub network:
 - An airline needs only 1 or 2 passengers per flight to each of 30+ connecting destinations to make a 100-seat aircraft "profitable"
 - However, such incremental analysis leads to a tendency to overlook potential displacement of other traffic on connecting legs
 - Same "incremental" logic makes it more difficult to stop service to a potentially unprofitable destination, which provides connecting traffic support to other flights
- Difficult to justify a new non-stop service to by-pass the hub, as it might steal traffic from hub flights:
 - However, large number of departures in a connecting market can allow airline to build market share and perhaps introduce a nonstop flight supported by many connecting opportunities

Recent Trends: Hub Strengthening

- Despite forecasts of more non-stop flights, a trend toward bigger and stronger hubs has re-emerged:
 - Largest US and European airlines have cut virtually all flights that do not originate or terminate at their hubs
 - Several smaller, weaker US hubs have been shut down
- Factors that continue to reinforce hub growth:
 - Liberalized bilateral agreements have allowed airlines to fly even low-density international routes from their hubs (e.g., CVG-MUC)
 - Small regional jets are being used to increase frequency of service to small spoke cities, <u>not</u> to over-fly the hub with non-stop service
 - Airline alliances focus on linkages between major hub networks
- With recent economic downturn, importance of hub operations will likely continue

Measuring Route "Profitability"

- Airline costs are driven by fleet and flight schedule
 - Fleet drives fixed costs (capital costs) and variable cost rates (fuel burn rates, maintenance rates)
 - Flight schedule drives utilization and thus variable costs
 - Costs are incurred on a flight basis and on a network basis
- Airline revenues are driven by O-D markets
 - Prices are set by competitive considerations or by regulation
 - Revenues are earned on a passenger itinerary basis
- Scheduling decisions are often made at the route and flight departure level
 - Airline managers must decide which flight legs to remove so that other flight legs can be added

Approaches to Flight Profit Measurement

- Ideally, add/change/remove a flight leg and then measure the profitability given that the rest of the network can be re-optimized
 - Captures interactive or network effects of both costs and revenues
 - Not easy as it requires a good model of the entire operation
- Another approach allocate all costs and revenues on a flight leg basis and then treat each leg as being independent of the rest of the network
 - Allocation schemes are always subjective
 - Does not capture network effects, very important in most cases
 - But, much easier to conceptualize

Sample Network (Baldanza Article)

Flight-Level Profitability

- Incremental Revenues
- Incremental Costs
- Measures of Profitability
- Network Contributions and Costs

Incremental Revenues (SYR-OMA)

- Two sources of incremental passenger revenues
 - Passengers boarding in SYR and deplaning in OMA (Local Revenue)
 - Passengers boarding in SYR and connecting in OMA to LAX or SFO (Connecting Revenue)
- Connecting O-D revenues allocated to each flight leg
 - Proration methodology needed to split O&D fare into component parts (e.g. mileage, ratio of full fares)
 - Or, assign total connecting O-D fare to flight leg being analyzed
- Implicit assumption is that all revenues from a flight segment will be lost if the segment is cancelled
 - Reality is that airline might recapture some of this revenue

Incremental Costs (SYR-OMA)

- Variable Operating Costs
- Aircraft Ownership Costs
 - Equivalent leasing costs based on duration of flight segment
- Overhead and Non-Operating Costs
 - Equivalent share of other fixed costs based on duration of flight segment
- Fully allocated flight costs equals the variable operating costs plus the aircraft ownership costs plus the allocated overhead and non-operating costs.

Network Contributions and Costs

Contributions to Rest of Network

Additional revenue on other segments due to presence of SYR-OMA segment

Costs to Rest of Network

- Cost of processing SYR connecting passengers at OMA
- Incremental cost of having more passengers on the connecting segments out of OMA
- Opportunity Costs of selling seats beyond OMA, which could have been occupied by passengers from other O-D markets (known as "network displacement costs")

Revenues & Costs for Sample Network

 Local SYR-OMA O-D revenue: 	\$6,000
 Connex prorated to SYR-OMA: 	\$1,500
 Connex proration to other legs: 	\$4,000
Variable operating costs:	\$4,500
Aircraft ownership costs:	\$2,000
 Allocated overhead & non-operating costs: 	\$1,500
 Network variable costs: 	\$ 700
 Network opportunity costs: 	\$ 500

SYR-OMA Profitability for Sample Network

 Variable Leg Profitability with 	
Network Contribution:	\$6,300

- Variable Leg Profitability with Network Contribution and Opportunity Costs: \$5,800
- Variable Leg Profitability with Aircraft Ownership and Network Contribution: \$4,300
- Variable Leg Profitability with Network Contribution, Aircraft Ownership and Opportunity Costs: \$3,800

SYR-OMA Profitability for Sample Network

 Fully Allocated Profitability with Network Contribution: 	\$2,800
 Fully Allocated Profitability with Network Contribution and Opportunity Costs: 	\$2,300
 Variable Leg Profitability: 	\$3,000
 Variable Leg Profitability with Aircraft Ownership: 	\$1,000
 Fully Allocated Leg Profitability: 	(\$ 500)

What is the right profitability measure?

Decision Process	Relevant Profitability Measure	Comments
Short-term scheduling optimization	Variable with network contribution	In the very short term, ownership and overhead costs are fixed. Flight and market level need the network contribution to be
Zarania da santa e se satura di bisata a	Janite V	useful.
Middle-term scheduling optimization	Variable plus ownership with network contribution	In the middle term, aircraft may be fungible.
Hub profitability for a single month	Variable profitability, no network contribution	In aggregation, adding network contributions would double-count revenues.
Hub profitability for six months	Variable plus ownership, no network contribution	A combination of the middle-term scheduling and single-month hub profits example.
Hub viability	Fully allocated profitability	Over time, every cost is variable.