

Flight Overbooking: Models and Practice

16.75J/1.234J Airline Management

Dr. Peter P. Belobaba

April 24, 2006

Lecture Outline

- Overbooking Terminology and Relationships
- Evolution of Airline Overbooking Models
 - Manual/Judgmental
 - Deterministic Model
 - Probabilistic/Risk Model
 - Cost-Based Overbooking Model
- Costs of Denied Boardings and Spoilage
- Customer Service and Goodwill Issues

- Determine maximum number of bookings to accept for a given physical capacity.
- Minimize total costs of <u>denied boardings</u> and <u>spoilage</u> (lost revenue).
- U.S. domestic no-show rates can reach 15-20 percent of final pre-departure bookings:
 - On peak holiday days, when high no-shows are least desirable
 - Average no-show rates have dropped, to 10-15% with more fare penalties and better efforts by airlines to firm up bookings
- Effective overbooking can generate as much revenue gain as fare class seat allocation.

Overbooking Terminology

 Physical Capacity 	CAP
 Authorized Capacity 	AU
 Confirmed Bookings 	BKD <= AU
 Waitlisted passengers 	WL
 Go-show passengers 	GS
 Stand-by passengers 	SB

Overbooking Terminology (cont'd)

 No-shows 	NS
 Show-ups 	SU
 No-show rate 	NSR
 Show-up rate 	SUR
 Passengers Boarded 	ΡΑΧ
 Denied Boardings 	DB
 Spoilage 	SP

Overbooking Relationships

1. PAX = min [BKD - NS + GS + SB, CAP]

= BKD + GS - NS + SB - DB

- 2. BKD = NS + SU
- 3. SU = PAX + DB GS SB
- 4. NSR = (BKD SU) / BKD
- 5. SUR = SU / BKD = 1.0 NSR
- 6. SP = CAP PAX, only when BKD = AU

Evolution of Airline Overbooking Models

• Overbooking models try to minimize:

- Total costs of overbooking (denied boardings plus spoilage)
- Risk of "excessive" denied boardings on individual flights, for customer service reasons
- Mathematical overbooking problem:
 - Find OV > 1.00 such that AU = CAP * OV
 - But actual no-show rate is highly uncertain

- Relies on judgment of human analyst to set overbooking level:
 - Based on market experience and perhaps recent no-show history
 - Tendency to choose OV = 1+NSR (or lower)
 - Tendency to focus on avoidance of DB
- For CAP=100 and mean NSR=.20, then:

AU = 100 (1.20) = 120

- Based on estimate of mean NSR from recent history:
 - Assume that BKD=AU ("worst case" scenario)
 - Find AU such that
 AU NSR*AU = CAP
 - Or, AU = CAP/(1-NSR)
- For CAP=100 and NSR=0.20, then: AU = 100/(1-.20) = 125

- Incorporates uncertainty about NSR for future flight:
 - Standard deviation of NSR from history, STD
- Find AU that will keep DB=0, assuming BKD=AU, with a 95% level of confidence:
 - Assume a probability (Gaussian) distribution of no-show rates
- Keep show-ups less than or equal to CAP, when BKD=AU:
 - Find SUR*, so that AU x SUR* = CAP, and Prob[AU x SUR* > CAP] = 5%
- From Gaussian distribution, SUR* will satisfy:

where SUR = mean show-up rate

STD = standard deviation of show-up rate

Probabilistic/Risk Model (cont'd)

• Optimal AU given CAP, SUR, STD with objective of DB=0 with 95% confidence is:

AU = <u>CAP</u> = <u>CAP</u>. SUR + 1.645 STD 1- NSR + 1.645 STD

• In our example, with STD= 0.05:

AU = 100 / (1-0.20 + 1.645*0.05) = 113

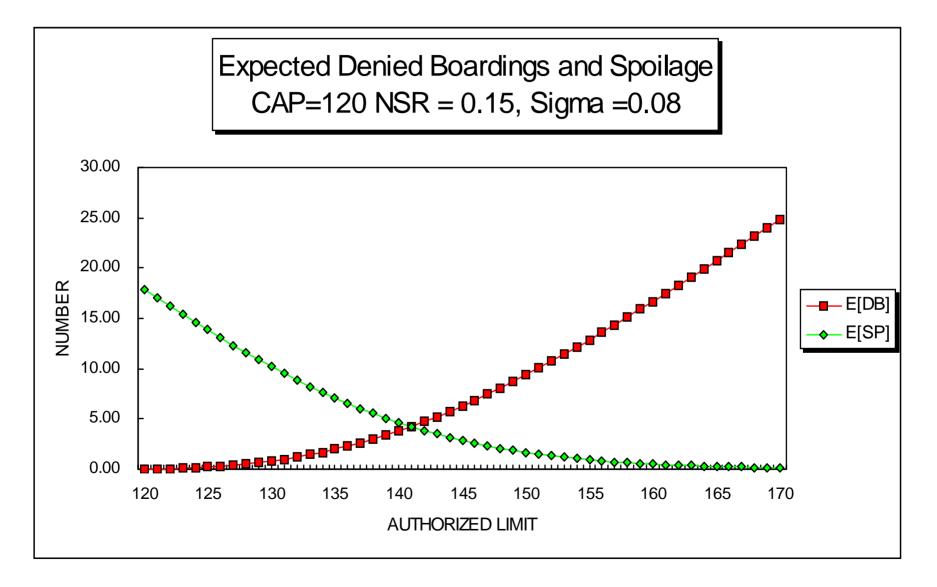
• The larger STD, the larger the denominator and the lower the optimal AU, due to increased risk/uncertainty about no-shows.

- **1. Reduce level of confidence of exceeding DB limit:**
 - Z factor in denominator will decrease, causing increase in AU

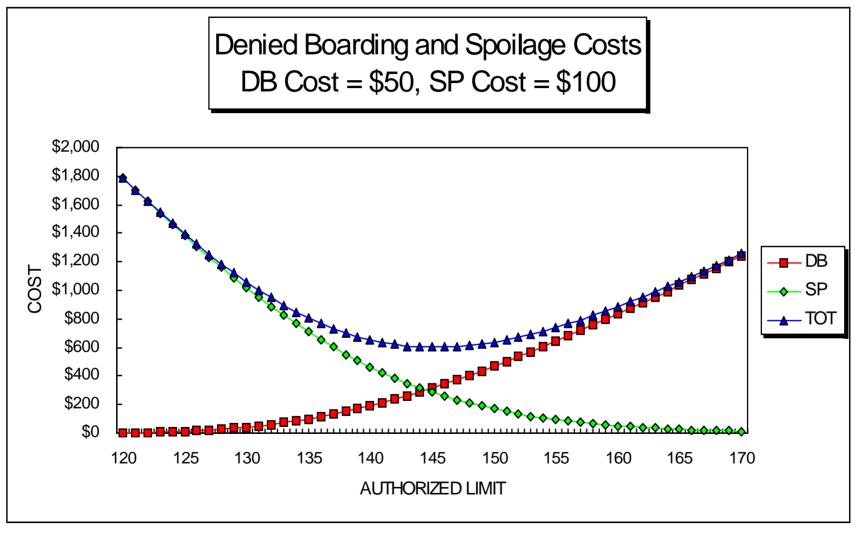
2. Increase DB tolerance to account for voluntary DB:

- Numerator becomes (CAP+ VOLDB), increases AU
- 3. Include forecasted empty F or C cabin seats for upgrading:
 - Numerator becomes (CAP+FEMPTY+CEMPTY), increases AU
 - Empty F+C could also be "overbooked"
- 4. Deduct group bookings and overbook remaining capacity only:
 - Firm groups much more likely to show up
 - Flights with firm groups should have lower AU

• Find AU that minimizes :


[Cost of DB + Cost of SP]

• For any given AU:


<u>Total Cost</u> = \$DB * E[DB] + \$SP * E[SP] \$DB and \$SP= cost per DB and SP, respectively E[DB] = expected number of DBs, given AU E[SP] = expected number of SP seats, given AU

 Mathematical search over range of AU values to find minimum total cost.

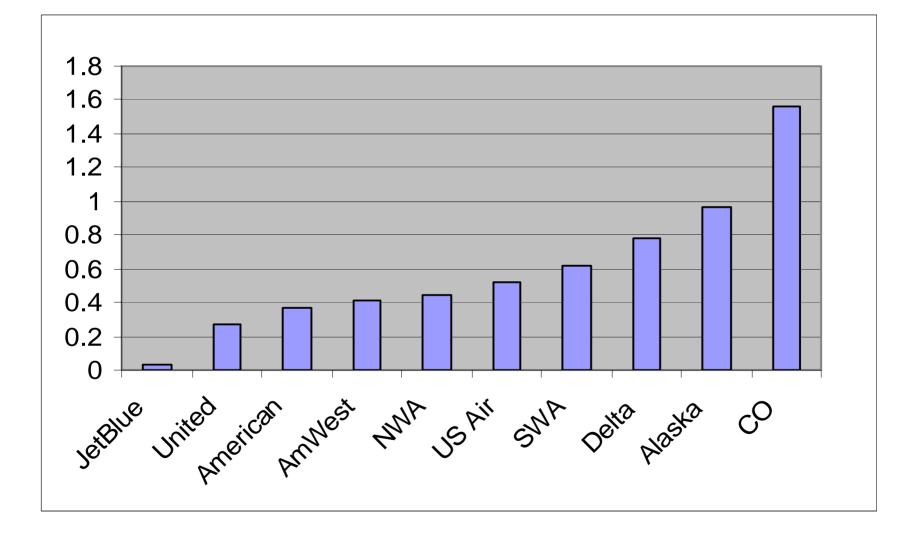
ICAT Example: Cost-Based Overbooking Model

- Denied Boarding Costs:
 - Cash compensation for involuntary DB
 - Free travel vouchers for voluntary DB
 - Meal and hotel costs for displaced passengers
 - Space on other airlines
 - Cost of lost passenger goodwill costs
- Many airlines have difficulty providing accurate DB cost inputs to these models.

Cost Inputs (cont'd)

- Spoilage Costs:
 - Loss of revenue from seat that departed empty
- What is best measure of this lost revenue:
 - Average revenue per seat for leg?
 - Highest fare class revenue on leg (since closed flights lose latebooking passengers)?
 - Lowest fare class revenue on leg (since increased AU would have allowed another discount seat)?
- Specifying spoilage costs is just as difficult.

- Many airlines tend to view aggressive overbooking in negative terms:
 - Denied boardings associated with poor customer service and loss of passenger goodwill
- But revenue loss of spoiled seats can be greater than DB costs:
 - Objective is to reduce both actual costs and loss of goodwill due to denied boardings
 - Comprehensive Voluntary DB program needed


- Comprehensive Voluntary DB Program:
 - Requires training and cooperation of station crews
 - Identify potential volunteers at check-in
 - Offer as much "soft" compensation as needed to make the passenger happy

• US airlines very successful in managing DBs:

- 2004 involuntary DB rate was 0.62 per 10,000
- 95% of DBs in U.S. are volunteers
- Good treatment of volunteers generates goodwill

2004 US Involuntary DBs per 10,000

