Airline Schedule Development

16.75J/1.234J Airline Management Dr. Peter Belobaba

February 22, 2006

Airline Schedule Development

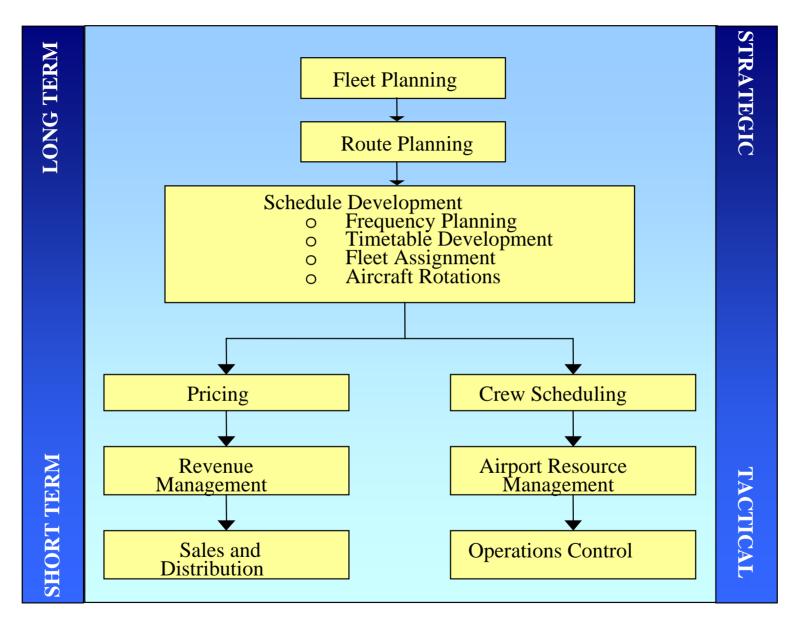
1. Schedule Development Process

- Airline supply terminology
- Sequential approach to schedule planning

2. Frequency Planning

Market share / frequency share

3. Timetable Development


Aircraft rotations and timetable constraints

4. Fleet Assignment Optimization

- Problem definition and objective
- Network modeling and solution
- Constraints and limitations

1. Schedule Development Process

- Given a set of routes to be operated in an airline network, and a fleet of aircraft, schedule development involves
 - Frequency planning (how often?)
 - Timetable development (at what times?)
 - Fleet assignment (what type of aircraft?)
 - Aircraft rotation planning (network balance)
- The process begins a year or more in advance and continues until actual departure time:
 - Frequency plans established first, based on routes and aircraft
 - Timetables and aircraft rotations defined 2-6 months in advance
 - Final revisions and "irregular operations" until the flight departs

Types of Decision

SOURCE: Prof. C. Barnhart

Time Horizon

Airline Supply Terminology

• Flight Leg (or "flight sector" or "flight segment")

- Non-stop operation of an aircraft between A and B, with associated departure and arrival time
- Flight
 - One or more flight legs operated consecutively by a single aircraft (usually) and labeled with a single flight number (usually)
 - NW945 is a two-leg flight BOS-MSP-SEA operated with a B757

Route

- Consecutive links in a network served by single flight numbers
- NW operates 2 flights per day on one-stop route BOS-MSP-SEA

• Passenger Paths or Itineraries

 Combination of flight legs chosen by passengers in an O-D market to complete a journey (e.g., BOS-SEA via connection at DTW)

Aircraft and Crew Schedule Planning: Sequential Approach

Schedule Design Fleet Assignment Aircraft Routing **Crew Scheduling**

Select optimal set of *flight legs* in a schedule

A flight specifies origin, destination, and departure time

Contribution = Revenue - Costs

Assign crew (pilots and/or flight attendants) to flight legs

2. Frequency Planning

- Frequency of departures on a route improves convenience of air travel for passengers and increases market share:
 - Peak departure times (early morning and late afternoon) are most attractive to a larger proportion of travelers in many markets
 - More frequent departures further reduce schedule displacement or "wait time" between flights, reducing travel inconvenience
 - Frequency is much more important in short-haul markets than for long-haul routes where actual flight time dominates "wait time"
 - In competitive markets, airline frequency share is most important to capturing time sensitive business travelers
 - Frequency of departures can be as important as path quality (nonstop vs. connection) in many cases

Frequency Planning Process

- Demand forecasts and competition drive the frequency of flights on a route:
 - Estimates of total demand between origin and destination
 - Expected market share of total demand, which is determined by frequency share relative to competitors
 - Potential for additional traffic from connecting flights
- "Load consolidation" affects frequency and aircraft size decisions:
 - Single flight with multiple stops provides service to several origindestination markets at the same time
 - Allows airline to operate higher frequency and/or larger aircraft
 - A fundamental reason for economic success of airline hubs

3. Timetable Development

- For a chosen frequency of service on each route, next step is to develop a specific timetable of flight departures:
 - Goal is to provide departures at peak periods (0900 and 1700)
 - But, not all departures can be at peak periods on all possible routes, given aircraft fleet and rotation considerations
 - Minimum "turn-around" times required at each stop to deplane/enplane passengers, re-fuel and clean aircraft
 - For example, 0900 departure from city A with 1100 arrival at B results in possible departure of aircraft from B at 1200
 - If this aircraft is to return to A, 1200 departure will be off-peak and have potentially lower demand, but keeping the aircraft on the ground until the next peak period reduces aircraft utilization (block hours per day)

Timetable Development Constraints

• Most airlines choose to maximize aircraft utilization:

- Keep ground "turn-around" times to a minimum
- Fly even off-peak flights to maintain frequency share and to position aircraft for peak flights at other cities
- Leaves little buffer time for maintenance and weather delays

• Numerous constraints affect timetable development:

- Hub networks require that flights arrive from spoke cities within a prescribed time range, to facilitate passenger connections
- Time zone differences limit feasible departure times (e.g., flights from US to Europe do not depart before 1700, as passengers do not want to arrive at their destination before 0600)
- Airport slot times, noise curfews limit scheduling flexibility
- Crew scheduling and routine maintenance requirements also affect timetable development

Timetable Development Process

- Complexity and size of timetable development problem make most schedule changes incremental:
 - A single change in departure time of a flight from A can have major impacts on down-line times, connections, aircraft rotations, and even number of aircraft required to operate the schedule
 - Further complicated by crew and maintenance schedule needs, requiring coordination with several airline operational departments
 - There are no computer models that can determine "optimal" timetable, given huge combination of departure/arrival times, demand and market share estimates, and thousands of constraints
 - However, interactive computer scheduling databases and decision support tools allow for much faster "what-if" analysis
 - Substantial decision support progress in fleet assignment and aircraft rotation optimization

4. Fleet Assignment Optimization

Prof. Cynthia Barnhart Massachusetts Institute of Technology

Outline:

- Problem Definition and Objective
- Fleet Assignment Network Representation
- Fleet Assignment Models and Algorithm

Fleet Assignment Problem

- Given:
 - Flight Schedule
 - Each flight covered exactly once by one fleet type
 - Number of Aircraft by Equipment Type
 - Can't assign more aircraft than are available, for each type
 - Turn Times by Fleet Type at each Station
 - Other Restrictions: Maintenance, Gate, Noise, Runway, etc.
 - Operating Costs, Spill and Recapture Costs, Total Potential Revenue of Flights, by Fleet Type
- What is the optimal (contribution/ profit maximizing) assignment of aircraft to flights?

Definitions

- Spill
 - Passengers that are denied booking due to capacity restrictions
- Recapture
 - Passengers that are recaptured back to the airline after being spilled from another flight leg
- For each fleet and flight combination:

Assignment Cost = Operating cost + (Spill Cost– Recapture Cost)

Fleet Assignment Example

Demand = 100 Fare = \$100

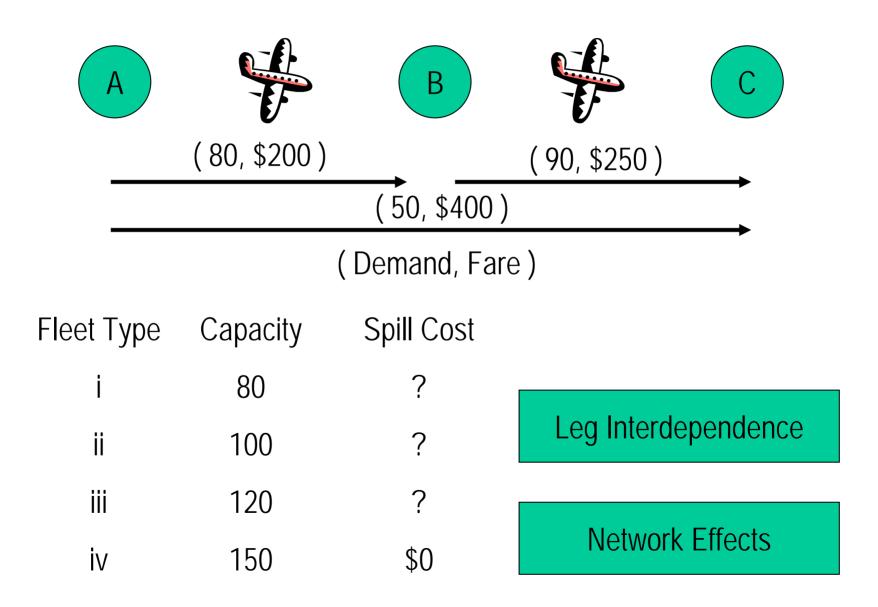
Fleet Type	Capacity	Spill Cost	Op. Cost	Assignment Cost
i	80	\$2,000	\$5,000	\$7,000
ii	100	\$0	\$6,000	\$6,000
iii	120	\$0	\$7,000	\$7,000
iv	150	\$0	\$8,000	\$8,000

Objective Function

- For each fleet flight combination: Cost = Operating cost + Spill cost
- Operating cost associated with assigning a fleet type k to a flight leg j is relatively straightforward to compute
 - Can capture range restrictions, noise restrictions, water restrictions, etc. by assigning "infinite" costs
- Spill cost for flight leg *j* and fleet assignment *k* = average revenue per passenger on *j* * MAX(0, unconstrained demand for *j* – number of seats on *k*)
 - Unclear how to compute revenue for flight legs, given revenue is associated with itineraries

Constraints

- Cover Constraints
 - Each flight must be assigned to exactly one fleet type


Balance Constraints

 Number of aircraft of a fleet type arriving at a station must equal the number of aircraft of that fleet type departing

Aircraft Count Constraints

 Number of aircraft of a fleet type used cannot exceed the number available

FAM Example: Network Effects

Solution

- Solve fleet assignment problems for large domestic carriers (10-14 fleets, 2000-3500 flights) within 10-20 minutes of computation time on workstation class computers
- Hane, et al. "The Fleet Assignment Problem, Solving a Large Integer Program," *Mathematical Programming*, Vol. 70, 2, pp. 211-232, 1995

A Look to the Future: Robust Scheduling

- Issue: Optimizing "plans" results in minimized planned costs, not realized costs
 - Optimized plans have little *slack*, resulting in
 - Increased likelihood of plan "breakage" during operations
 - Fewer recovery options
- Challenge: Building "robust" plans that achieve minimal realized costs
- Challenge: Building re-optimized plans in realtime