

## Introduction to PODS Passenger Choice Model

### Dr. Peter P. Belobaba 16.75J/1.234J Airline Management February 27, 2006



## **Overview of PODS Architecture**

# Multiple iterations (samples) of pre-departure booking process and departure day:

- → Stationary process (no trends)
- Initial input values for demands, then gradual replacement with direct observations
- → "Burn" first n observations in calculating final scores

### **Pre-departure process broken into time frames:**

- → RM system intervention at start of each time frame
- → Bookings arrive randomly during time frame
- → Historical data base updated at end of time frame







## **PODS Demand Inputs**

- Total daily demand for an O-D market, by passenger type (business vs. leisure).
- Booking curves by passenger type over 16 booking periods before departure.
- Correlation parameters between passenger types and across booking periods.



### **Booking Arrival Curves by PAX Type**





## **Business vs. Leisure Passengers**

#### Two passenger types defined by:

- → Time of day demand and schedule tolerance
- → Maximum out-of-pocket fare willingness to pay
- → "Attributed costs" associated with path quality, fare restrictions, trip re-planning

# Maximum willingness to pay (WTP) and attributed costs modeled as Gaussian distributions:

- → Means and variances (k-factors) specified as inputs
- Each simulated passenger has randomly drawn value from each distribution



## **Revenue Management Intervention**

### PODS replicates airline RM system actions over time, taking into account previous interventions:

- Previously applied booking limits affect actual passenger loads and, in turn, future demand forecasts
- "Historical" booking data is used to generate forecasts for "future" departures.

# RM system <u>only</u> uses data available from past observations.



# **Modeling Passenger Path Choice**

### Define each passenger's "decision window":

- → Earliest departure and latest arrival time
- → Market time-of-day demand profile
- Eliminate paths with lowest available fare greater than passenger's maximum willingness to pay

### Pick best path from remainder, trading off:

- → Fare levels and restrictions
- → Path quality (number of stops/connects)
- → Other disutility parameters



# **Choice of Path/Fare Combination**

# Given passenger type, randomly pick for each passenger generated:

- → Maximum "out-of-pocket" willingness to pay
- → Disutility costs of fare restrictions
- Additional disutility costs associated with "re-planning" and path quality (stop/connect) costs

# Screen out paths with fares greater than this passenger's WTP.

Assign passenger to feasible (remaining) path/fare with lowest total cost.



## **Example of WTP Formulation**





## **Fare Class Restriction Disutilities**

Disutility costs associated with the restrictions of each fare class are added to the fare value to determine the choice sequence of a given passenger among the classes with fare values less than his/her WTP.

The restrictions are:

- → R1: Saturday night stay (for M, B and Q classes),
- → R2: cancellation/change penalty (for B and Q classes),
- → R3: non-refundability (for Q class).



## **Fare Restriction Disutilities**

These coefficients have been "tuned" with structured fares so that on average\* business and leisure passengers have respectively a Y/M/B/Q and a Q/B/M/Y choice sequence, as shown on the next two slides.

\*The following slides represent the mean disutilities for an average passenger. The actual disutility value for an individual passenger is a random number taken from a normal distribution centered on the mean disutility value.











## **Interpretation of Cost Parameters**

### **Assumed MAX PAY values:**

- → Virtually all business passengers will pay Y fare if necessary
- → Most leisure passengers will not buy B, very few will buy M

### Assumed <u>relative</u> restriction disutility costs:

- Average business passenger finds fares with more restrictions less attractive
- → Even with restrictions, most leisure passengers prefer Q fare



## **EXAMPLE: Fare Structure**

| Fare | Price | Advance  | Sat. Night | Non-       | Change |
|------|-------|----------|------------|------------|--------|
| Code | Level | Purchase | Min. Stay  | Refundable | Fee    |
| Y    | \$800 |          |            |            |        |
| Μ    | \$400 | 7 day    | Yes        |            |        |
| В    | \$300 | 14 day   | Yes        | Yes        |        |
| Q    | \$200 | 21 day   | Yes        | Yes        | Yes    |



### **EXAMPLE: Mean Parameter Values**

|                      | BUSINESS | LEISURE |
|----------------------|----------|---------|
| MAX PAY (mean)       | \$1200   | \$300   |
| Relative Costs:      |          |         |
| Sat. Night Min. Stay | \$450    | \$350   |
| Non-Refundable       | \$150    | \$50    |
| Change Fee           | \$150    | \$50    |



# Mean Total Fare Product Disutility (\$ Fare + Restriction Costs)

| Fare | Price | Advance  | BUSINESS   | LEISURE    |
|------|-------|----------|------------|------------|
| Code | Level | Purchase | PASSENGERS | PASSENGERS |
| Y    | \$800 |          | \$800      | \$800      |
| Μ    | \$400 | 7 day    | \$850      | \$750      |
| В    | \$300 | 14 day   | \$900      | \$700      |
| Q    | \$200 | 21 day   | \$950      | \$650      |



## **Total Disutility Costs**

### Passenger path choice criteria: Least total cost

Total cost = Fare + Restriction disutility + PQI disutility + Replanning disutility + Unfavorite airline disutility

### Impact of passenger disutilities

→ With passenger disutility costs included in PODS simulations, passengers are able to differentiate the "attractiveness" of each path/fare combination, resulting in higher preference for "favorable" paths



# **Other Disutility Costs**

#### PQI disutility cost

- → Unit PQI disutility cost determined as function of market basefares
- → PQI: 1 for nonstop path, 3 for connecting path
- → PQI disutility cost = Unit PQI disutility cost\*PQI

#### Replanning disutility cost

- Applies when a given path is outside of passenger's decision window
- ➔ Function of market basefares
- Unfavorite airline disutility cost (not used in ePODS)
  - → Applies when a given path is not a favorite airline
  - ➔ Function of market basefares