Airline Fleet Assignment

Cynthia Barnhart 16.75 Airline Management

Outline:

- Problem Definition and Objective
- Fleet Assignment Network Representation
- Fleet Assignment Models and Algorithms
- Extension of Fleet Assignment to Schedule Design
- Conclusions

Airline Schedule Planning

Schedule Design

Fleet Assignment

Aircraft Routing

Crew Scheduling

Select optimal set of *flight legs* in a schedule

A flight specifies origin, destination, and departure time

Contribution = Revenue - Costs

Assign crew (pilots and/or flight attendants) to flight legs

Problem Definition

- Given:
 - Flight Schedule: a set of (daily) flight legs;
 - >Aircraft fleet: consisting of different fleet types;
 - Passenger demand pattern;
 - Revenue and operating cost data;
- Find:

A feasible fleet assignment, i.e. a mapping from flight legs to fleet types that maximizes

profit = total revenue – total operating costs.

• Class Exercise: Flight Schedule, Fares, &

P	mand					
Flight #	From	То	Dept Time	Arr Time	Fare	Demand
			(EST)	(EST)	[\$]	[passengers]
CL301	LGA	BOS	1000	1100	150	250
CL302	LGA	BOS	1100	1200	150	250
CL303	LGA	BOS	1800	1900	150	100
CL331	BOS	LGA	0700	0800	150	150
CL332	BOS	LGA	1030	1130	150	300
CL333	BOS	LGA	1800	1900	150	150
CL501	LGA	ORD	1100	1400	400	150
CL502	LGA	ORD	1500	1800	400	200
CL551	ORD	LGA	0700	1000	400	200
CL552	ORD	LGA	0830	1130	400	150

• Class Exercise: Fleet Information

Fleet type	Number of	Capacity	Per flight operating cost [\$000]		
	aircraft owned	[seats]	LGA - BOS	LGA – ORD	
DC-9	1	120	10	15	
B737	2	150	12	17	
A300	2	250	15	20	

• Class Exercise:

Find:

An assignment of fleet types to the flights in this network that maximizes net profit.

DEvaluating assignment profits:

$$c_{l,f} := fare_l \times \min(D_l, Cap_f) - OpCost_{l,f}$$

where:

- $c_{l,f}$: profitability of assigning fleet type f to flight leg l;
- $fare_l$: fare of flight leg l;
- D_l : demand of flight leg l;
- Cap_{f} : capacity of fleet type f;

 $OpCost_{l,f}$: operating cost of assigning fleet type f to flight leg l.

• <u>Class Exercise</u>: Evaluating assignment profitabilities...

Profitability [\$000 per day]

Flight #	DC-9	B737	A300
CL301	8	10.5	22.5
CL302	8	10.5	22.5
CL303	5	3	0
CL331	8	10.5	7.5
CL332	8	10.5	22.5
CL333	8	10.5	7.5
CL501	33	43	40
CL502	33	43	60
CL551	33	43	60
CL552	33	43	40

Time-Line Network:

Optimal solution:

Revenue = \$428,500 Cost = \$148,000

Profit = \$280,500

Notations

- Decision Variables
 - $f_{k,i}$ equals 1 if fleet type k is assigned to flight leg i, and 0 otherwise
 - $y_{k,o,t}$ is the number of aircraft of fleet type k, on the ground at station o, and time t
- Parameters
 - $C_{k,i}$ is the cost of assigning fleet k to flight leg i
 - N_k is the number of available aircraft of fleet type k
 - $-t_n$ is the "count time"
- Sets
 - -L is the set of all flight legs i
 - K is the set of all fleet types k
 - O is the set of all stations o
 - CL(k) is the set of all flight arcs for fleet type k crossing the count time 3/9/2006

Fleet Assignment Model (FAM)

Subject to:

 $\sum_{k \in K} \overline{f_{k,i}} = 1 \quad \forall i \in L$

$$y_{k,o,t^{-}} + \sum_{i \in I(k,o,t)} f_{k,i} - y_{k,o,t^{+}} - \sum_{i \in O(k,o,t)} f_{k,i} = 0 \quad \forall k,o,t$$

 $\sum_{o \in O} y_{k,o,t_n} + \sum_{i \in CL(k)} f_{k,i} \le N_k \quad \forall k \in K$

 $f_{k,i} \in \{0,1\}$ $y_{k,o,t} \ge 0$

Hane et al. (1995), Abara (1989), and Jacobs, Smith and Johnson (2000)

Constraints

- Cover Constraints
 - Each flight must be assigned to exactly one fleet
- Balance Constraints
 - Number of aircraft of a fleet type arriving at a station must equal the number of aircraft of that fleet type departing
- Aircraft Count Constraints
 - Number of aircraft of a fleet type used cannot exceed the number available

Objective Function

- For each fleet flight combination: Cost = Operating cost + Spill cost -Recaptured revenue
- Operating cost associated with assigning a fleet type k to a flight leg j is relatively straightforward to compute
 - Can capture range restrictions, noise restrictions, water restrictions, etc. by assigning "infinite" costs
- Spill cost for flight leg j and fleet assignment k = average revenue per passenger on j * MAX(0, unconstrained demand for j number of seats on k)
 - Unclear how to compute revenue for flight legs, given revenue is associated with itineraries

16

- Recaptured revenue
- Revenue from passengers that are recaptured back to

FAM Example: Spill

Demand = 100 Fare = \$100

Fleet Type	Capacity	Spill Cost	Op. Cost	Assignment Cost
i	80	\$2,000	\$5,000	\$7,000
ii	100	\$0	\$6,000	\$6,000
iii	120	\$0	\$7,000	\$7,000
iv	150	\$0	\$8,000	\$8,000

- □ A few observations on FAM:
 - » Nodes can be consolidated to reduce model size;
 - > Fleet-specific time-line networks are possible;
 - > Fleet assignment not aircraft assignment!
 - > Note that feasibility of FAM implies that aircraft rotations exist (takes only a little bit of thinking);
 - > However, these rotations might not be maintenance feasible...

□ Solvability:

- > FAM can be solved using standard branchand-bound software;
- Solution times are FAST, thanks to FAM's small LP gaps...

Computational Sample: 2,044 flight legs, 9 fleet types

Problem size 18,487 # of columns # of rows 7,827 50,034 # of non-zero entries Strength of formulation Root node LP solution 21,401,658 21,401,622 Best IP solution Difference 36 Solution time [sec] 974

- FAM suffers from a significant drawback in its modeling of the revenue side...
- Passengers book itineraries not flight legs...
- Capacity decisions on one leg will affect passenger spill on other legs...
- This phenomenon is known as network effects.

Fleet Assignment Model (FAM)

Subject to:

 $\sum_{k \in K} f_{k,i} = 1 \qquad \forall i \in L$

$$y_{k,o,t^{-}} + \sum_{i \in I(k,o,t)} f_{k,i} - y_{k,o,t^{+}} - \sum_{i \in O(k,o,t)} f_{k,i} = 0 \quad \forall k,o,t$$

FAM assumes leg independence $f_{k,i} \in \{0,1\}$ $y_{k,o,t} \ge 0$

Hane et al. (1995), Abara (1989), and Jacobs, Smith and Johnson (2000)

Spill Cost Computation and Underlying Assumption

• Given:

Spill cost for flight leg j and fleet assignment k
 average revenue per passenger on j *
 MAX(0, unconstrained demand for j –
 number of seats on k)

• Implication:

 A passenger might be spilled from some, but not all, of the flight legs in his/ her itinerary

An Iterative Approach

Passenger Mix

- Passenger Mix Model (PMIX)
 - Kniker (1998)
 - Given a fixed, fleeted schedule, unconstrained passenger demands by itinerary (requests), and recapture rates find maximum revenue for passengers on each flight leg

Network Effects and Recapture

Problem Modification

- Based on differences in expected spill from FAM and the Spill Calculator, we modify the FAM problem
 - Update objective cost coefficients
- Cost coefficient update, many heuristics possible

FAM Spill Calculation Heuristics

• Fare Allocation

- Full fare the full fare is assigned to each leg of the itinerary
- Partial fare the fare divided by the number of legs is assigned to each leg of the itinerary
- Shared fare the fare divided by the number of capacitated legs is assigned to each capacitated leg in the itinerary

• Spill Cost for each variable

- Representative Fare
 - A "spill fare" is calculated; each passenger spilled results in a loss of revenue equal to the spill fare
- Integration
 - Sort each itinerary by fare, spill costs are sum of x lowest fare passengers, where $x = max\{0, demand capacity\}$

3/9/2006

An Illustrative Example

	Fleet Type A B	e Seats 100 200		flight 1 flight 2 $X \rightarrow Y \rightarrow Z$		→ <u>Z</u>
N	<u>/larket</u> X-Y Y-Z X-Z	Itinerary 1 2 1-2		Average Fare \$200 \$225 \$300	No. of <u>Pax</u> 75 150 75	
Fleet	Assign.	Partial Alloc	•	Full Alloc.	Ac	tual Opt.
1'1. 1-	A-A	\$30,000		\$38,125	31,875	50 X-Z, 75 Y-Z
	A-B B-A	\$11,250 \$22,500		\$15,625 \$28,125	12,500 28,125	25 X-Z, 25 X-Y 125 Y-Z
	B-B	\$3,750		\$5,625	5,625	25 Y-Z

Spill Calculation: Results

- For a 3 fleet, 226 flights problem:
 - The best representative fare solution results in a gap with the optimal solution of \$2,600/day
 - Using a shared fare scheme and integration approach, we found a solution with an \$8/day gap.
- By simply modifying the basic spill model, significant gains can be achieved

Itinerary-Based Fleet Assignment

- Impossible to estimate airline profit exactly using link-based costs
- Enhance basic fleet assignment model to include passenger flow decision variables
 - Associate operating costs with fleet assignment variables
 - Associate revenues with passenger flow variables

Itinerary-based Fleet Assignment Definition

- Given
 - a fixed schedule,
 - number of available aircraft of different types,
 - unconstrained passenger demands by itinerary, and
 - recapture rates,

Find maximum contribution

Network effects

Itinerary-Based FAM (IFAM)

Itinerary-Based FAM (IFAM) $Min\sum_{k,i}\sum_{k,i}\theta_{k,i}f_{k,i} + \sum_{k,i}\sum_{k,i}(fare_{p} - b_{p}^{r}fare_{r})|t_{p}^{r}|^{3}$ $p \in P$ $r \in P$ $k \in K$ $i \in L$ $\sum_{k \in K} f_{k,i} = 1$ $\forall i \in L$ Subject to: $y_{k,o,t^{-}} + \sum_{i \in I(k,o,t)} f_{k,i} - y_{k,o,t^{+}} - \sum_{i \in O(k,o,t)} f_{k,i} = 0$ $\forall k, o, t$ $\sum_{o \in O} y_{k,o,t_n} + \sum_{i \in CL(k)} f_{k,i} \le N_k$ $\forall k \in K$ $\sum_{k} f_{k,i} SEATS_{k} + \sum_{r \in P} \sum_{p \in P} \delta_{i}^{p} t_{p}^{r} - \sum_{r \in P} \sum_{p \in P} \delta_{i}^{p} b_{p}^{r} t_{p}^{r} \ge Q_{i}$ $\forall i \in L$ $2 \qquad \sum_{r \in P} t_p^r \le D_p \qquad \forall p \in P$ $t_p^r \ge 0$ $f_{k,i} \in \{0,1\}$ $y_{k,o,t} \ge 0$

Kniker (1998)

Column and Constraint Generation

Implementation Details

- Computer
 - Workstation class computer
 - 2 GB RAM
 - CPLEX 6.5
- Full size schedule
 - ~2,000 legs
 - ~76,000 itineraries
 - ~21,000 markets
 - 9 fleet types

- RMP constraint matrix size
 - ∼77,000 columns
 - ~11,000 rows
- Final size
 - ~86,000 columns
 - ~19,800 rows
- Solution time
 - LP: > 1.5 hours
 - IP: > 4 hours

88% Saving from Row Generation>95% Saving from Column Generation

Computational Sample:	2,044 flight legs, 9 fleet types			
	FAM	IFAM		
Problem size				
# of columns	18,487	77,284		
# of rows	7,827	10,905		
# of non-zero entries	50,034	128,864		

	•	
Strength of formulation		
Root node LP solution	21,401,658	21,302,460
Best IP solution	21,401,622	21,066,811
Difference	36	235,649
Solution time [sec]	974	>100,000
Contribution [\$/dav]	21 178 815	21 066 811

IFAM Contributions

- Annual improvements over basic FAM
 - Network Effects: ~\$30 million
 - Recapture: \sim \$70 million
- These estimates are upper bounds on achievable improvements

Subnetwork-Based FAM

- IFAM has limited opportunity for expansion to include schedule design decisions
 - Fractionality of solution to LP relaxation is a big issue
- Need alternative fleet assignment kernel
 - Capture network effects
 - Capture network chiceds Maintains tractability Accuracy

Basic Concept Isolate network effects Spill occurs only on *constrained legs*

< 30% of total legs are potentially constrained
< 6% of total itineraries are potentially binding

Modeling Challenges

• Utilize composite variables (Armacost, 2000; Barnhart, Farahat and Lohatepanont, 2001)

Challenges Efficient column enumeration

SFAM Formulation

FAM solution algorithm applies

3/9/2006

SFAM Results

• Testing performed on full size schedules

- Runtimes similar to FAM, much faster than itinerary-based approaches
 - Tight LP relaxations
- SFAM achieve improved solutions relative to FAM and itinerary-based approach
- SFAM has potential for further integration or extension
 - Time windows, stochastic demand, schedule design

Recapture Rate Sensitivity

IFAM Sensitivity Analysis

	FAM	IFAM	Diff	erence (IFAM-FAM)
Problem 1N-3A				
Revenue	\$ 4,858,089	\$ 4,918,691	\$	60,602
Operating Cost	\$ 2,020,959	\$ 2,021,300	\$	341
Contribution	\$ 2,837,130	\$ 2,897,391	\$	60,261
Problem 2N-3A				
Revenue	\$ 3,526,622	\$ 3,513,996	\$	(12,626)
Operating Cost	\$ 2,255,254	\$ 2,234,172	\$	(21,082)
Contribution	\$ 1,271,368	\$ 1,279,823	\$	8,455
				\$/day

Data Quality Issue

Demand deviation ~15%

Extending Fleet Assignment Models to Include "Incremental" Schedule Design...

Airline Schedule Planning

Schedule Design

Fleet Assignment

Select optimal set of *flight legs* in a schedule

Assign aircraft types to flight legs such that *contribution* is maximized

Aircraft Routing

Crew Scheduling

Schedule Design: Fixed Flight Network, Flexible Schedule Approach

- Fleet assignment model with time windows
 - Allows flights to be re-timed slightly (plus/ minus 10 minutes) to allow for improved utilization of aircraft and improved capacity assignments

Initial step in integrating flight schedule design and fleet assignment decisions

Example: Results Aircraft Utilization

Do time windows allow a reduction in the number of required aircraft?

	TW	= 0	$\mathbf{TW} = 20$		
	a/c req'd cost		a/c req'd	cost	
P1	365	28,261,302	363	28,114,913	
P 2	428	29,000,175	426	28,965,409	

Results

- Time windows can provide significant cost savings, as well as a potential for freeing aircraft
 - \$50 million in operating costs alone for one U.S. airline

Schedule Design: Optional Flights, Flexible Schedule Approach

- Fleet assignment with "optional" flight legs
 - Additional flight legs representing varying flight departure times
 - Additional flight legs representing new flights
 - Option to eliminate existing flights from future flight network

Lohatepanont, M. and Barnhart, Cynthia, "Airline Schedule Planning: Integrated Models and Algorithms for Schedule Design and Fleet Assignment," Transportation Science, future. 16.75 58

Schedule Design: Results

- Demand and supply interactions
 - Tractability potentially a big issue
- Resulting schedules operate fewer flights
 - Lower operating costs
 - Fewer aircraft required
- Order of magnitude impact: ~\$100 \$350 million improvement annually for variable market demand
 - Rough estimates: sensitive to quality of data, spill and recapture assumptions, demand forecasts and stochasticity
 - Comparison to *planners' schedules*
 - Excludes benefits from saved aircraft