16.810

Engineering Design and Rapid Prototyping Lecture 6 Design Optimization 16.810 - Structural Design Optimization -

Instructor(s)

Prof. Olivier de Weck

January 11, 2005

1C.RID What Is Design Optimization?

Selecting the "best" design within the available means

1. What is our criterion for "best" design? Objective function

2. What are the available means? Constraints

(design requirements)

3. How do we describe different designs? Design Variables

Minimize $f(\mathbf{x})$ Subject to $g(\mathbf{x}) \le 0$ $h(\mathbf{x}) = 0$

For computational design optimization,

Objective function and constraints must be expressed as a function of design variables (or design vector X)

Objective function: $f(\mathbf{x})$

Constraints: $g(\mathbf{x}), h(\mathbf{x})$

- Cost = f(design)
- Lift = f(design)
- Drag = f(design)
- Mass = f(design)

What is "f" for each case?

Optimization Statement

Minimize
$$f(\mathbf{x})$$

Subject to $g(\mathbf{x}) \le 0$
 $h(\mathbf{x}) = 0$

- $f(\mathbf{x})$: Objective function to be minimized
- $g(\mathbf{x})$: Inequality constraints
- $h(\mathbf{x})$: Equality constraints
- **x** : Design variables

1G.A1D

Optimization Procedure

IG.AID

Illii

Selecting the best "structural" design

- Size Optimization
- Shape Optimization
- Topology Optimization

Miī

1G.RID Structural Optimization

1. To make the structure strong e.g. Minimize displacement at the tip

2. Total mass $\leq M_{C}$

 $g(\mathbf{x}) \leq \mathbf{0}$

IG.R10Size Optimization

Design variables (x)

x: thickness of each beam

f(x) : compliance g(x) : mass

Number of design variables (ndv)

ndv = 5

Size Optimization

PHiT

1G.R10 Shape Optimization

Design variables (x)

x: control points of the B-spline

(position of each control point)

f(x) : compliance g(x) : mass

Number of design variables (ndv)

ndv = 8

Shape Optimization

1G.A10

l'liī

1G. R1D

Shape Optimization

Multiobjective & Multidisciplinary Shape Optimization

Objective function

1. Drag coefficient, 2. Amplitude of backscattered wave

Analysis

- 1. Computational Fluid Dynamics Analysis
- 2. Computational Electromagnetic Wave Field Analysis

Obtain Pareto Front

Raino A.E. Makinen et al., "Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms," International Journal for Numerical Methods in Fluids, Vol. 30, pp. 149-159, 1999

1G.R10 Topology Optimization

Design variables (x)

x : density of each cell

Number of design variables (ndv)

ndv = 27

f(x) : compliance
g(x) : mass

Topology Optimization

Short Cantilever problem

14117

Topology Optimization

Bridge problem Obj = 4.16×10^5 **Distributed** loading **Obj** = 3.29×10^5 Minimize $\int_{\Gamma} F^{i} z^{i} d\Gamma$, Subject to $\int_{\Omega} \rho(x) d\Omega \leq M_o$, **Obj** = 2.88×10^5 $0 \le \rho(x) \le 1$ Mass constraints: 35% **O**bi = 2.73×10^5

Topology Optimization

DongJak Bridge in Seoul, Korea

1G. A10

What determines the type of structural optimization?

Type of the design variable

(How to describe the design?)

Optimum Solution

- Graphical Representation

1G.A10

14117

Gradient-based methods

Heuristic methods

IG.RID Gradient-based Methods

IG.RID Gradient-based Methods

Steepest Descent	UNCONSTRAINED
Conjugate Gradient	
Quasi-Newton	
Newton	
Simplex – linear	CONSTRAINED
SLP – linear	
SQP – nonlinear, expensive, common in engineering applications	
Exterior Penalty – nonlinear, discontinuous design spaces	
Interior Penalty – nonlinear	
Generalized Reduced Gradient – nonlinear	
Method of Feasible Directions – nonlinear	
Mixed Integer Programming	

1G.RID Global optimum vs. Local optimum

No active constraints

Heuristic Methods

Heuristics Often Incorporate Randomization

3 Most Common Heuristic Techniques

- Genetic Algorithms
- Simulated Annealing
- Tabu Search

Optimization Software

- iSIGHT
- DOT
- Matlab (fmincon)

Шiī

1G.RID Topology Optimization Software

ANSYS

16.810

Static Topology Optimization Dynamic Topology Optimization Electromagnetic Topology Optimization

Subproblem Approximation Method

First Order Method

Design domain

Illii

Massachusetts Institute of Technology

16.810 Topology Optimization Software

MSC. Visual Nastran FEA •

Elements of lowest stress are removed gradually.

IC.RINDesign Freedom

IC.RINDesign Freedom

1G.A1D Cost versus Performance

Illii

References

P. Y. Papalambros, Principles of optimal design, Cambridge University Press, 2000

O. de Weck and K. Willcox, Multidisciplinary System Design Optimization, MIT lecture note, 2003

M. O. Bendsoe and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," comp. Meth. Appl. Mech. Engng, Vol. 71, pp. 197-224, 1988

Raino A.E. Makinen et al., "Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms," International Journal for Numerical Methods in Fluids, Vol. 30, pp. 149-159, 1999

II Yong Kim and Byung Man Kwak, "Design space optimization using a numerical design continuation method," International Journal for Numerical Methods in Engineering, Vol. 53, Issue 8, pp. 1979-2002, March 20, 2002.

1G.R10 Web-based topology optimization program

Developed and maintained by <u>Dmitri Tcherniak</u>, <u>Ole Sigmund</u>, <u>Thomas A. Poulsen</u> and <u>Thomas Buhl</u>.

Features:

- 1.2-D
- 2.Rectangular design domain
- 3.1000 design variables (1000 square elements)
- 4. Objective function: compliance (F× δ)
- 5. Constraint: volume

1G.RID Web-based topology optimization program

Objective function

-Compliance (F×δ)

Constraint

Illii

-Volume

Design variables

- Density of each design cell

1G.R10 Web-based topology optimization program

No numerical results are obtained.

Optimum layout is obtained.

1G.RID Web-based topology optimization program

Absolute magnitude of load does not affect optimum solution