Supplement to 16.881 Homework\#2
 This is required for Exploration of the Quadratic Loss Function ${ }^{\text {simp }}$

Dan Frey, 6 JUN 98
The areas I expect you'll need to change to do homework\#2 are highlighted.
ORIGIN $:=1 \quad$ Let 1 be the first index in any vector.
$\mathrm{A}_{\mathrm{o}}:=10 \quad$ Cost to scrap the resistor [cents]

$$
\mathrm{m}:=100 \quad \text { Nominal value of the resistance (in ohms) }
$$

$\Delta_{\mathrm{O}}:=5 \% \cdot \mathrm{~m} \quad$ Allowable variation in the diameter is $+/-5 \%$

$$
\mathrm{k}_{1}:=\frac{\mathrm{A}_{\mathrm{o}}}{\Delta_{\mathrm{o}}^{2}} \quad \mathrm{k}_{2}:=\frac{\mathrm{A}_{\mathrm{o}}}{\Delta_{\mathrm{o}}^{2}}
$$

$L(y):=\left\{\begin{array}{ll}k_{1} \cdot(y-m)^{2} & \text { if } y>m \\ k_{2} \cdot(y-m)^{2} & \text { if } y \leq m\end{array} \quad\right.$ Define the quadratic loss function $\mathrm{y}:=\mathrm{m}-1.2 \cdot \Delta_{\mathrm{o}}, \mathrm{m}-1.2 \cdot \Delta_{\mathrm{o}}+\frac{\Delta_{\mathrm{o}}}{10} . . \mathrm{m}+1.2 \cdot \Delta_{\mathrm{o}} \quad \begin{aligned} & \text { Define a range over } \mathrm{y} \text { for the purpose } \\ & \text { of plotting }\end{aligned}$

Create a Monte Carlo simulation of the manufacture of the resistors.

$$
\begin{aligned}
& \mathrm{n}:=1000 \quad \text { Number of resistors to be manufactured } \\
& \sigma:=\frac{\Delta_{\mathrm{o}}}{6} \\
& \mu:=\mathrm{m}+1.5 \cdot \sigma \\
& \mathrm{R}:=\operatorname{rnorm}(\mathrm{n}, \mu, \sigma) \quad \begin{array}{l}
\text { Create a vector with all of the resistance values of the } \\
\text { resistors we manufactured. }
\end{array}
\end{aligned}
$$

Set up the format for a histogram of the data.
number_of_bins := 20
width_of_bins $:=\frac{4 \cdot \Delta_{\mathrm{o}}}{\text { number_of_bins }}$
$\mathrm{j}:=1$.. number_of_bins +1
$\operatorname{bin}_{\mathrm{j}}:=\mathrm{m}-2 \cdot \Delta_{\mathrm{O}}+$ width_of_bins $\cdot \mathrm{j}$
rel_freq $:=\frac{\text { hist }(\operatorname{bin}, \mathrm{R})}{\mathrm{n}}$

Define a vector with the start and end points of the bins.

Compute the relative frequency distribution over interval.
bin_center $:=$ bin $+0.5 \cdot$ width_of_bins

Average_quality_loss $:=\frac{1}{n} \cdot \sum_{i=1}^{n} L\left(R_{i}\right)$

Average_quality_loss $=0.845$ in cents

How does this compare to the theoretically derived figure?
$\int_{m-2 \cdot \Delta_{o}}^{m+2 \cdot \Delta_{\mathrm{o}}} \mathrm{k}_{1} \cdot(\mathrm{y}-\mathrm{m})^{2} \cdot\left[\frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot \mathrm{e}^{\frac{-(\mathrm{y}-\mu)^{2}}{2 \cdot \sigma^{2}}}\right] d y=0.903 \quad$ in cents

