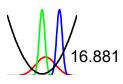
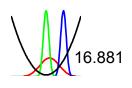
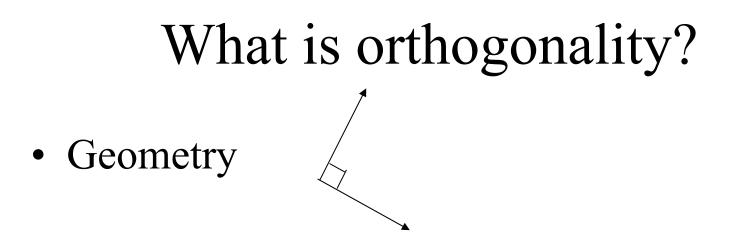
Constructing Orthogonal Arrays



Learning Objectives

- Introduce & explore orthogonality
- Study the standard OAs
- Practice computing DOF of an experiment
- Learn how to select a standard OA
- Introduce means to modify OAs
- Consider studying interactions in OAs



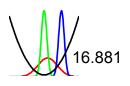


- Vector algebra $\vec{x} \cdot \vec{y} = 0$
- Robust design
 - Form *contrasts* for the columns (*i*)

 $w_{i1} + w_{i2} + w_{i3} \dots + w_{i9} = 0$

- Inner product of contrasts must be zero

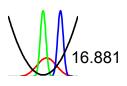
 $w^{\langle i \rangle} \cdot w^{\langle j \rangle} = 0$



Before Constructing an Array

We must define:

- Number of factors to be studied
- Number of levels for each factor
- 2 factor interactions to be studied
- Special difficulties in running experiments

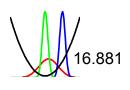


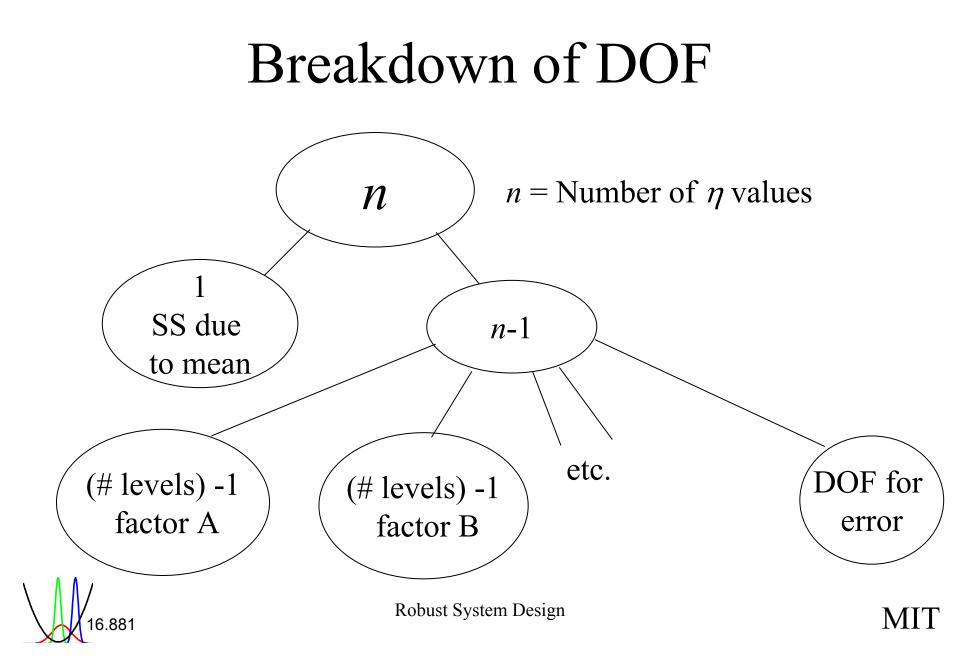
Counting Degrees of Freedom

• Grand mean

- 1

- Each control factor (e.g., A)
 (# of levels of A -1)
- Each two factor interaction (e.g., AxB)
 (DOF for A)x(DOF for B)
- Example -- $2^1 x 3^7$





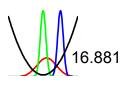
DOF and Modeling Equations

• Additive model

 $\eta(A_i, B_j, C_k, D_i) = \mu + a_i + b_j + c_k + d_i + e^{-\alpha}$

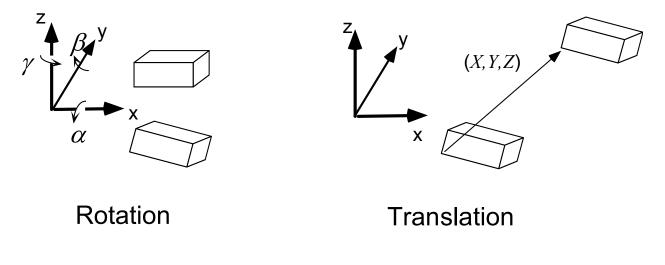
• How many parameters are there?

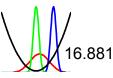
• How many additional equations constrain the parameters?



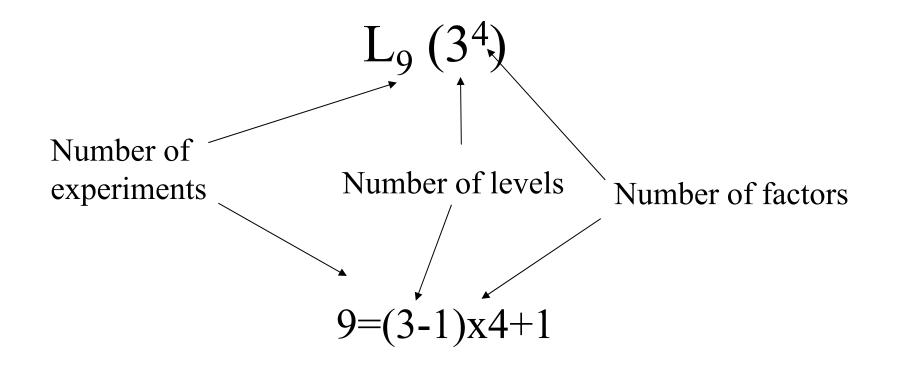
DOF -- Analogy with Rigid Body Motion

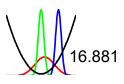
- How many parameters define the position and orientation of a rigid body?
- How do we remove these DOF?





Notation for Matrix Experiments





Standard Orthogonal Arrays

- See table 7.1 on Phadke page 152
- Note: You can never use an array that has fewer rows than DOF req'd
- Note: The number of factors of a given level is a **maximum**
- You can put a factor with fewer columns into a column that has more levels

– But NOT fewer!

Standard Orthogonal Arrays

		Maximum	Maximum Number of Columns				
Orthogonal	Number of	Number of	at These Levels				
Array	Rows	Factors	2	3	4	5	
L_4	4	3	3	-	-	-	
L_8	8	7	7	-	-	-	
L_9	9	4	-	4	-	-	
L_{12}	12	11	11 -		-	-	
L_{16}	16	15	15	-	-	-	
L'_{16}	16	5	-	-	5	-	
L_{18}	18	8	1	7	-	-	
L_{25}	25	6	-	-	-	6	
L ₂₇	27	13	1	13	-	-	
L_{32}	32	31	31	-	-	-	
L' ₃₂	32	10	1	-	9	-	
L_{36}	36	23	11	12	-	-	
L'36	36	16	3	13	-	-	
L_{50}	50	12	1	-	-	11	
L_{54}	54	26	1	25	-	_	
L_{64}	64	63	63	-	-	-	
L' ₆₄	64	21	-	-	21	-	
L_{81}	81	40	-	40	-	-	

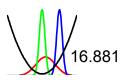
.881

Difficulty in Changing Levels

- Some factor levels cost money to change
 - Paper airplane
 - Other examples?
- Note: All the matrices in Appendix C are arranged in increasing order of number of level changes required (left to right)
- Therefore, put hard to change levels in the leftmost columns

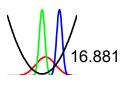
Choosing an Array -- Example 1

- 1 two level factor
- 5 three level factors
- What is the number of DOF
- What is the smallest standard array that will work?



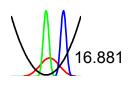
Choosing an Array -- Example 2

- 2 two level factor
- 3 three level factors
- What is the number of DOF
- What is the smallest standard array that will work?



Dummy Levels

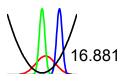
- Turns a 2 level factor into a 3 level factor (or a 3 to a 4 etc.)
- By creating a "new" level A3 that is really just A1 (or A2)
- Let's consider example 2
- Question -- What will the factor effect plot look like?



Dummy Levels Preserve Orthogonality

• Let's demonstrate this for Example 2

• But **only** if we assign the dummy level consistently

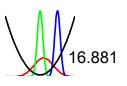


Considerations in Assigning Dummy Levels

- Desired accuracy of factor level effect
 - Examples?
- Cost of the level assignment
 - Examples?
- Can you assign dummy levels to **more than one factor** in a matrix experiment?
- Can you assign **more than one dummy level** to a single factor?

Compounding Factors

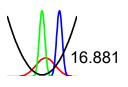
• Assigns two factors to a single column by *merging* two factors into one



Compounding Factors --Example

- 3 two level factors
- 6 three level factors
- What is the smallest array we can use?

• How can compounding reduce the experimental effort?

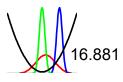


Considerations in Compounding

- Balancing property not preserved between compounded factors
 C₁=A₁B₁
 - $C_2 = A_1 B_2$ $C_3 = A_2 B_2$
- Main effects confounded to some degree
- ANOVA becomes more difficult

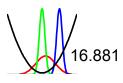
Interaction Tables

- To avoid confounding A and B with AxB, leave a column unassigned
- To know which column to leave unassigned, use an **interaction table**



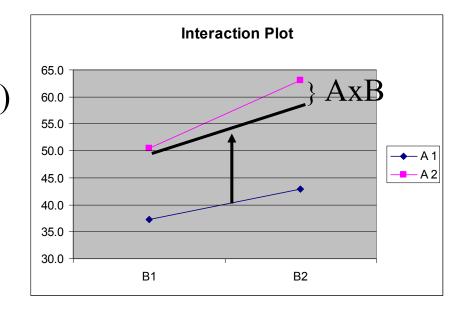
Interaction Table Example

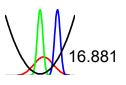
- We are running an L8
- We believe that CF4 and CF6 have a significant interaction
- Which column do we leave open?



Two Level Interactions in L₄

- AxB Interaction = $(y_{A_{2}B_{2}} - y_{A_{1}B_{2}}) - (y_{A_{2}B_{1}} - y_{A_{1}B_{1}})$
- As you learned from the noise experiment



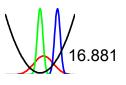


Interactions in Larger Matrices

• AxB Interaction = $(\overline{y}_{A,B_2} - \overline{y}_{A_1B_2}) - (\overline{y}_{A_2B_1} - \overline{y}_{A_1B_1})$

• Average the rows with the treatment levels listed above

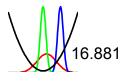




Two Factor Interaction Numerical Example

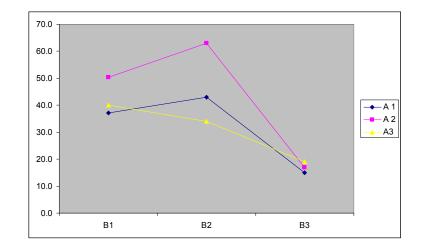
• 4x6 =
$$(\overline{y}_{A_2B_2} - \overline{y}_{A_1B_2}) - (\overline{y}_{A_2B_1} - \overline{y}_{A_1B_1})$$

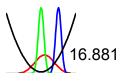
Run	c1	4x6	c3	Α	c5	В	c7	
1	1	1	1	1	1	1	1	1.2
2	1	1	1	2	2	2	2	1.7
3	1	2	2	1	1	2	2	2.1
4	1	2	2	2	2	1	1	2.6
5	2	1	2	1	2	1	2	4.9
6	2	1	2	2	1	2	1	3.9
7	2	2	1	1	2	2	1	0.9
8	2	2	1	2	1	1	2	1.1



Three Level Interactions

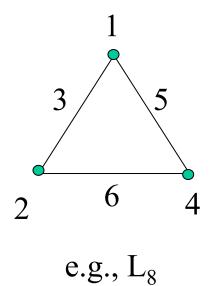
- AxB has 4 DOF
- Each CF has 2DOF
- Requires two unassigned columns (the *right* ones)

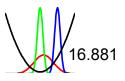




Linear Graphs

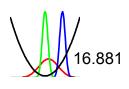
 To study interaction between CF dot and CF dot, leave CF on connecting line unassigned





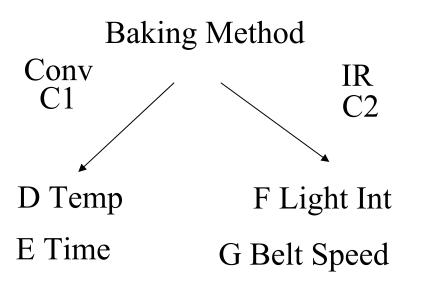
Column Merging

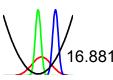
- Can turn 2 two level factors into a 4 level factor
- Can turn 2 three level factors into a six level factor
- Need to strike out interaction column (account for the right number of DOF!)
- Example on an L₈



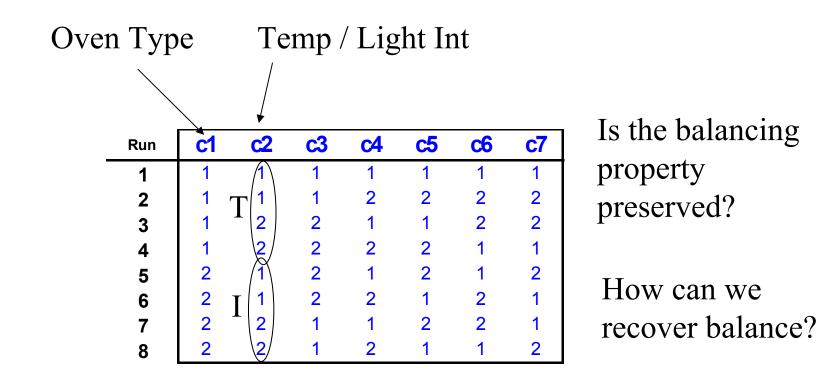
Branching Design

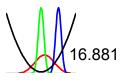
- One control factor determines the appropriate choice of other control factors
- Strike out the parent x child column to preserve the balancing property





Branching Design





Next Steps

- Homework #7 due on Lecture 10
- Next session tomorrow
 - Read Phadke Ch. 10
 - Read "Planning Efficient Software Tests"
 - Tought questions:
 - What does software do?
 - How is software different from hardware?
 - How does this affect the application of RD?
- Quiz on Constructing Arrays

