16.886 Air Transportation Systems Architecting

Formation Flight Aerodynamic Performance

February 25, 2004 Amandine Denis

Outline

Theoretical Predictions

- Experimental Results
- Comments

Models and Parameters

Horseshoe vortex model:

Multhopp and Blake:

Theoretical Results

Performance Benefits

In the maximum range condition ($C_{Di} = 0.5 C_D$)

Model	Quantity	Total Flight Power Reduction
Wings	2	10%
	3	13-14%
	×	26%
Airplanes	2	~10%

Constraint	Gain in range (factor)
Maximum formation range	\sqrt{n}
Maximum range	2n < 2
for one aircraft	$\frac{1}{n+1}$ ≤ 2
Simulation for 3 aircraft	11.5%
with rotation	

Shape of the formation

- Streamwise spacing does not influence the total flight power reduction
- The distribution of the power reduction on the wings depends strongly on the shape of the formation
- Optimum lift distribution:
 - Elliptical distribution of aircraft weight across the formation (heaviest in the center)
 - It can be simulated by a rotating echelon formation
 - Advantage: safer

Theoretical Results

Number of aircraft

- Numerical simulations using the rotating echelon formation show that as more aircraft are added, relative range increases up to a maximum of about 1.8 R_{single}
- Beyond 5 or 6 aircraft, the additional payoff is rapidly diminished.

Importance of accuracy

Theoretical Results

About 50% of the maximum achievable benefit is lost if the lateral position cannot be maintained to better than 0.1 span.

Performance benefits

Wind tunnel measurements and flight tests

- Observation of 10-20% drag reduction for the trail aircraft
- No improvements for lead aircraft
- Sometimes, discrepancy with predictions for the amplitude of the reduction or the optimum position
- Near the optimum position, the increase in lift can allow the trail aircraft to fly at a lower angle of attack, thereby achieving an overall decrease in drag

Relative position

- Dependence on altitude and speed that did not appear in the models
- Dependence on downstream spacing
- Shape of the vortex is different

Trailing Vortices

- The wake of an aircraft is composed of:
 - Concentrated vortices from flaps and the wing tip
 - an unstable vortex sheet along the trailing edge
 - Disturbances coming from protruding parts and jets
- It merges into a pair of concentrated vortices
- The position and decay of these vortices is very dependent on the environment:
 - Ambient wind
 - Atmospheric turbulences
 - Stratification
 - Heat flux (convection)

Comments

- Problems of the models:
 - wings / aircraft
 - Only valid in ideal conditions
- Some other things to consider:
 - The optimum lift distribution of each wing deviates significantly from an elliptic distribution
 - Use of adaptive lifting surfaces may enable future aircraft to take full advantage of formation flight benefits by enabling them to adapt their wing geometry.

Questions?