Formation Flight Feasibility Study

16.886: Final Presentation

May 5th, 2004

Outline

- Motivation and goals
- High-level architecture
- Key tradeoffs and relationships
- Component descriptions
- Procedures
- Program plan
- Business case
- Conclusions

Results

- There is a business case for implementing formation flight in the long range widebody cargo aircraft market
 - The business case is close for medium range
 - There is probably not a case for short range
- There is a likely market in long-range aircraft large enough to cover development costs
- Fuel benefits from formation flight range from 5% to 20% for 2 to 5 aircraft formations
- Critical needs:
 - Detailed market and cost study
 - Flight tests

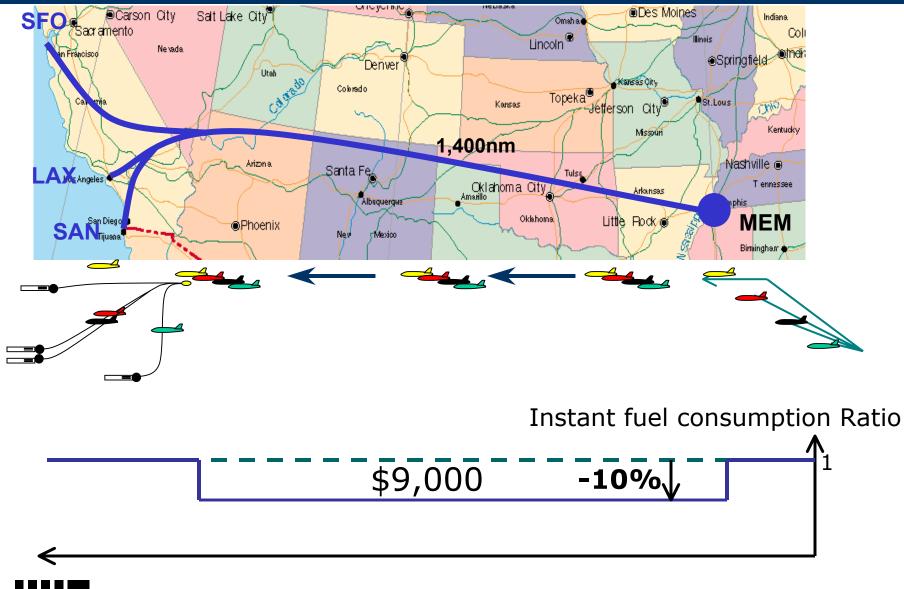
Motivation

• Why formation flight?

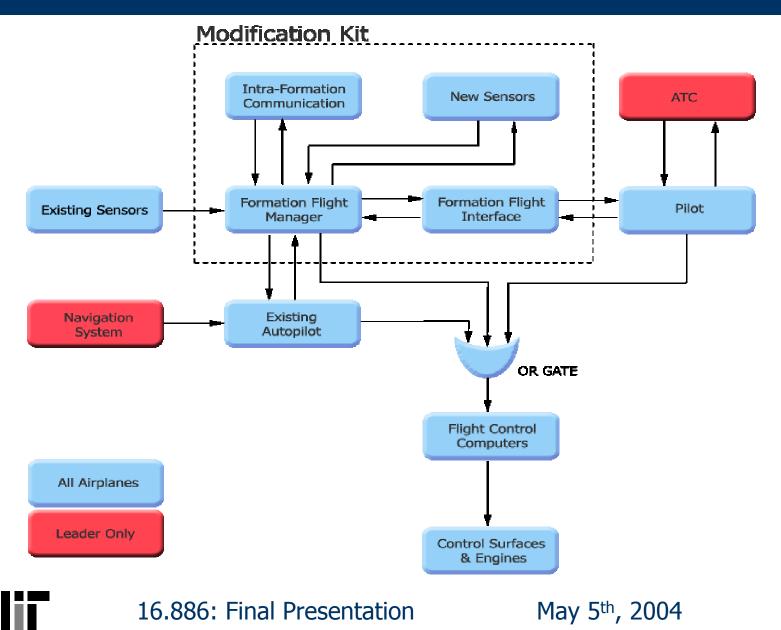
 Flying at a given spot in the wake of another aircraft can decrease induced drag

• Why now?

- New advances in software and GPS have enabled positionkeeping
 - NASA AFF program
- World air cargo traffic growing on average 6.4% per year in the next 20 years
 - Asian market growing at 10.3%
- Fuel prices increasing (44% over the past year)
 - Demand for technology to lower fuel costs
 - Fuel costs normally 12-18% of total airline costs


System Goal

To enable existing commercial cargo aircraft to fly in formation, in order to achieve cost savings, increase range, and increase airspace capacity.

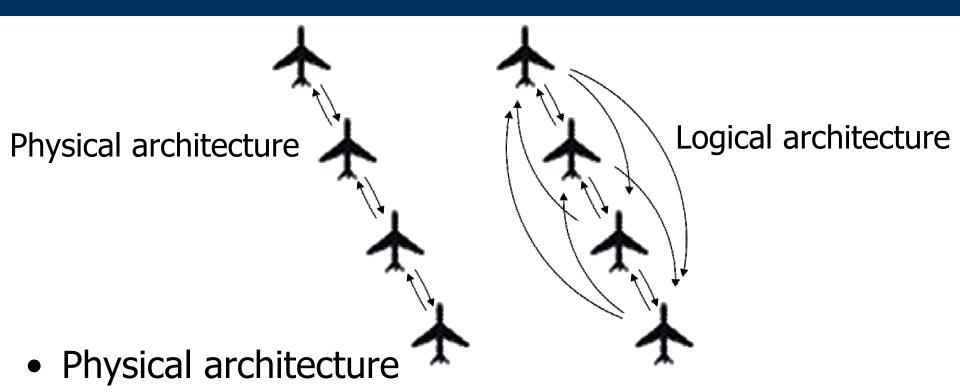

Includes:

- -A set of physical components
- -Procedures within the air transportation system
- -Development and implementation plan

Mission Overview: Example

System High-Level Architecture

Key Tradeoffs

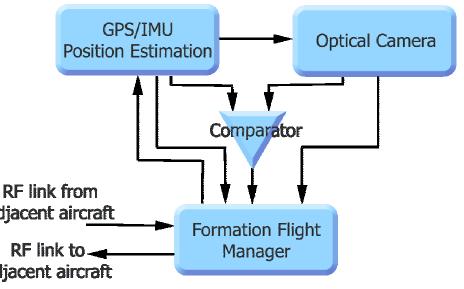

Variable	Advantages	Drawbacks
↑ precision	↓ drag	↑ cost
↑ system integration level	↑ precision	↑ cost ,↑ risk ↑ development time
↑ new technologies	↑ precision	↑ risk, ↑ cost
↑ no. of aircraft in formation	↓ drag ↓ congestion	 ↑ ATC separation ↓ string stability ↑ controller workload
↑ types and no. of aircraft certified to fly in formation	↑ operational flexibility	 ↑ size of test matrix ↑ mapping matrix ↑ time to certify
↑ ATC separation buffer	↑ safety	↑ congestion

Formation Flight Manager

- Functions
 - Produce heading, velocity, altitude commands to existing autopilot
 - Alternative: Entirely new autopilot generating control surface deflections
 - Interface with pilot
 - Channels required information to communications link
- High-level control strategy: Centralized leader-follower
 - Leader
 - Issues commands to follower aircraft to optimize formation trajectory
 - Provides timely information for anticipation of maneuvers
 - Follower
 - Generation of control commands to reach leader-specified positions
 - Refinements
 - Performance-seeking control

Inter-Aircraft Communications

- All aircraft communicate only with adjacent aircraft via radio link
- Logical architecture
 - All aircraft have information about all other aircraft


Pilot Interface

• Flight Display on ND 1 & 2:

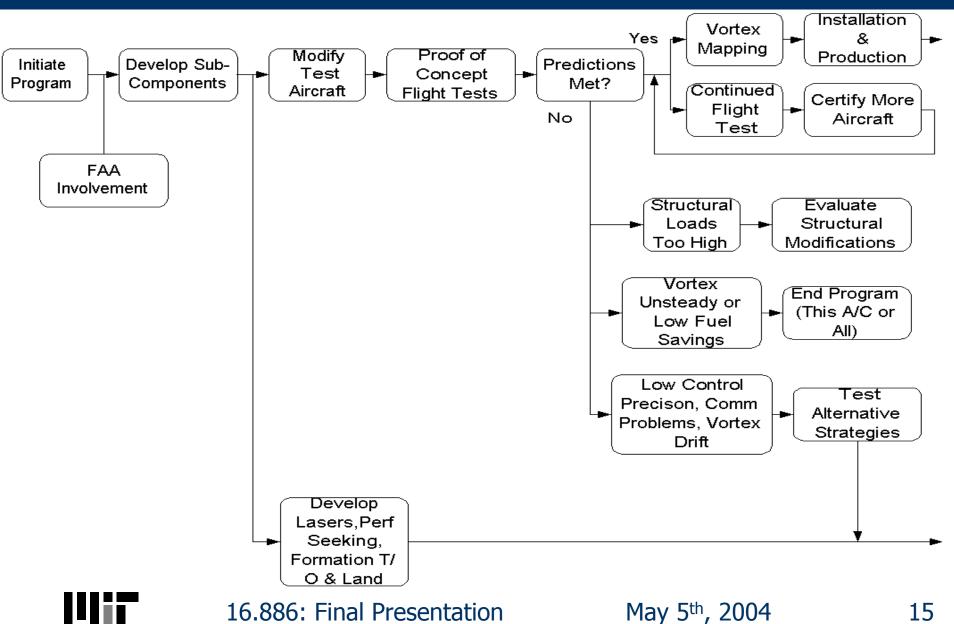
- Predictive display of the position of the surrounding planes with safety distance thresholds associated to alarms
- Flying mode (leader/follower)
- Graphical display of the route followed by the formation
- CDU pages dedicated to formation flight:
 - Status and route of the formation, updated automatically from the leader
 - Status of the formation software characteristics and the associated alarms

Position and Velocity Sensing

- Primary system
 - Coupled carrier-phase differential GPS and IMU
- Backup system
 - Optical Camera
 - Aimed using GPS/IMU data
 - Constantly compared with ^{adjacent aircraft} GPS/IMU output to check ^{RF link to}
 validity of position data
 - Takes over when GPS/IMU fails for safe breakaway from formation

16.886: Final Presentation

May 5th, 2004


Procedures

- Formation shape: rotating echelon or staggered chevron
- Procedures driven by fuel consumption, delays, and safety
- Take-off and landing procedures
 - When possible, by pairs, with different ROC to avoid holding pattern and save fuel
 - Different airports: join-up by timing & turning, landing easily handled
- Join-up procedures
 - Joining aircraft arrive from behind
- Break-away procedures
 - Separate aircraft horizontally and vertically
- Unexpected break-away procedures
 - Partial (can catch-up and join-up again)
 - Leaves the formation permanently (ATC Clearance)

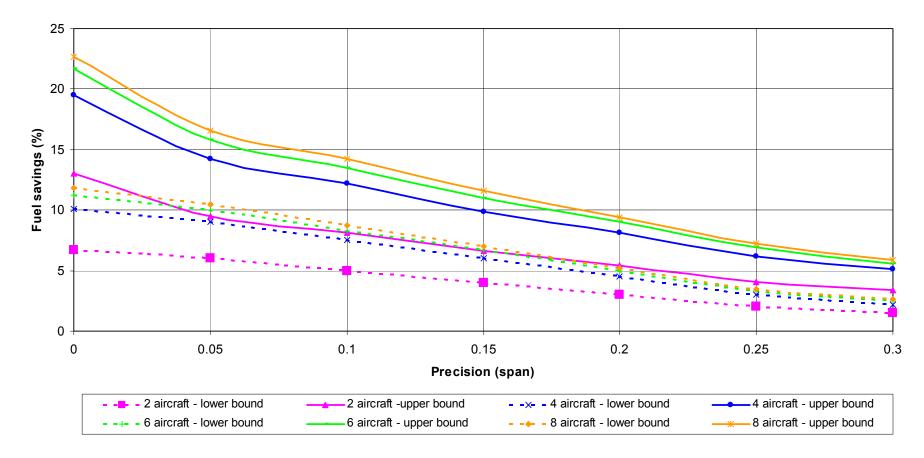
ATC

- Add relevant formation data to flight strip (join-up, break-away locations)
- Increase in minimum separation criteria (1nm)
- ATC talks with one pilot only
- Safety inside the formation is the pilots' responsibility
- "EFOPS" for formations using extended range routes
- NAS capacity enhancement, decrease in workload
 - -1 formation = 1 cell
- Handling unexpected break-aways:
 - Temporary overload
 - Identify emergency procedures (holding patterns)

Development Plan

Safety Analysis

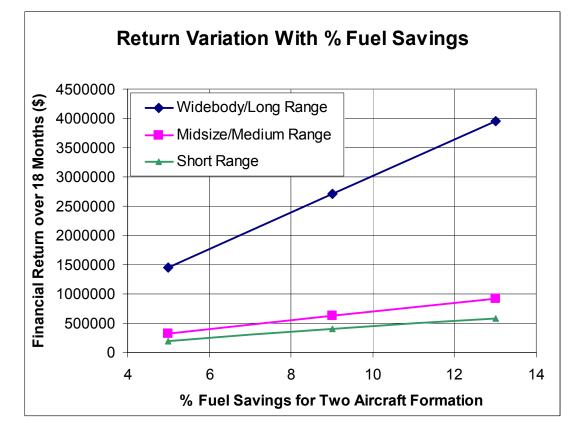
Event	Consequence	Severity	Probability
	Visual system takes over, formation		
Communication failure	breaks up, lose some benefits until	Low	Moderate
	comm is restored		
Visual system failure	Formation breaks up due to lack of	Low	Moderate
	backup system, lose benefits	LOw	
Dual comm & visual system failure	Formation breaks up, safety hazard		
	due to lack of knowledge of other	High	Low
	positions		
Single aircraft system failure	Aircraft leaves the formation until	Low	Moderate
(engines, controls, whatever)	problem is fixed, lose benefits	LOW	
Common mode aircraft system	Formation breaks up, lose benefits	Low	Low
failure	I officiation breaks up, lose benefits	LOW	
Pilot misinterprets display and	Formation breaks up unnecessarily	Low	Moderate
takes over when he shouldn't	and loses benefits		wouchate
Pilot misinterprets display and	Possible collision	High	Low
doesn't take over			


Program Risk Analysis

Risk	Risk Level	Mitigation Strategy	
Vortices drift or position hold controllers do not get predicted benefits	Medium	Parallel development of performance seeking control. Extensive vortex mapping early in the program	
Required precision not realized	Low	Alternate control strategies and sensing developed in parallel	
Static or fatigue loading exceeded in vortex	Low	Testing scheduled early in program	
FAA does not approve	Medium	FAA brought into program early	

Fuel Benefit vs. Precision

Fuel savings upper and lower bound in function of the precision of the station-keeping



16.886: Final Presentation

May 5th, 2004

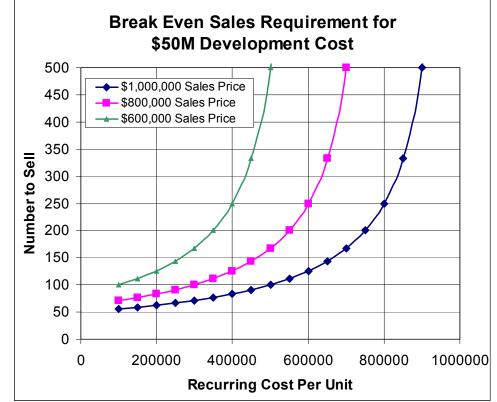
Variation of Return with Performance

 The benefit to the cargo airline or developing company is a strong function of the chosen market and achievable precision of formation flight

16.886: Final Presentation

Business Case (Airline Side)

- UPS Daily flight schedule (incomplete international data)
- Grouping by origin/destination with <1hr flight time change (domestic), <3hr flight time change (Int'l)
- Fuel cost: \$1/gal
- Fuel Savings: 9-15% based on mean value of fuel savings for 2 to 5 aircraft in formation


<500 nm	500-1000 nm	1000-2500 nm	>2500 nm
			≥200 IIII
45%	28%	22%	6%
-	\$350-\$582	\$400-\$1411	\$2170-\$3180
-	\$315,000- \$523,800	\$360,000- \$1,269,900	\$1,953,000- \$2,862,000
	-	- \$350-\$582 - \$315,000-	- \$350-\$582 \$400-\$1411 - \$315,000- \$360,000-

May 5th, 2004

Business Case (Developer Side)

- Development Cost Estimate:
 - Compare to similar programs
 - **\$50,000,000** (ceiling based upon complexity)
- Recurring Cost Estimate:
 - Sum estimated component costs
 - **\$400,000/**unit
- Refit during C/D check to eliminate fleet downtime

Market Estimation

- 83-250 installations for break-even (depending upon sales price).
- Total Market Estimate:
 - Boeing: currently 690 Medium/Widebody freighters in service, approximately 400 Widebodies
- Developer would need to install kits on 21-63% of all Widebodies to break even
- Airline Widebody Fleet Estimate:
 - FedEx: 174 (DC-10/MD-10/MD-11/A330)
 - Atlas: 39 (747)

Results

- There is a business case for the long range Widebody cargo aircraft market
 - The business case is close for medium range
 There is probably not a case for short range
- There is a likely market in long-range aircraft large enough to cover development costs
- Fuel benefits from formation flight range from 5% to 20% for 2 to 5 aircraft formations
- Critical needs:
 - Detailed market and cost study
 - Flight tests

Value of Formation Flight

- For air cargo airlines:
 - Cargo carriers save money
 - Reduced prices capture market share, increase profit
 - Increased range reaches additional markets, more profit
- For the air transportation system:
 - Reduces air traffic en-route
 - Will lead to autonomous formation take-off and landing to reduce airport congestion
- For the environment:
 - Reduces aircraft emissions and global warming
- For the military:
 - Could lead to autonomous refueling
 - Enhances the mission capabilities of the current fleet

Open Questions

- What are the true, realizable induced drag savings of formation flight for large transport aircraft?
 – Size, location, strength, stability of wing vortices
- How well will the proposed control approach work?
 - Will use of the existing autopilot be adequate?
 - Will performance seeking or other advanced algorithms improve this?
- Structural fatigue: Modifications required?
- More detailed market analysis
- Will the FAA certify a formation flight system? If so, what will be the cost?

Conclusions

- A formation flight system concept is:
 - A viable idea with a sizable and growing potential market
 - An enabling technology for new markets
- Technology for realization of benefits exists, but needs flight testing and certification
- Many questions about true performance benefits must be answered in order to reduce program risk

References

- Airbus Global Market Forecast, Sept 2002, available at http://www.airbus.com/pdf/media/gmf2001.pdf
- Blake, W.B., and Multhopp, D., "Design, Performance and Modeling Considerations for Close Formation Flight," AIAA Paper 98-4343, Aug. 1998.
- Cobleigh, B., "Capabilities and Future Applications of the NASA Autonomous Formation Flight (AFF) Aircraft," AIAA Paper 2002-3443, May 2002.
- Clarke, J.P., Cummings, M., Deyst, J., Hansman, J., and Holmes, R., personal communications
- Eurocontrol BADA 3.3 (2000)
- ETMS Data files
- Federal Aviation Administration (FAA) <u>www.faa.gov</u>
- FAA Aerospace Forecasts Fiscal Years 2004-2015, (March 2004).
- Hanson, C.E., Ryan, J., Allen, M.J., and Jacobson, S.R., "An Overview of Flight Test Results for a Formation Flight Autopilot," AIAA Paper 2002-4755, Aug. 2002.
- Gillie, J., "Jet-fueled ingenuity; As the price of flying soars, airlines try every trick they can think of to cut costs", available at http://www.aiada.org/article.asp?id=9647, Apr. 17, 2004.
- Jane's All the World Aircraft (2003-2004) <u>www.janes.com</u>
- Proud, A.W., Pachter, M., and D'Azzo, J.J., "Close Formation Flight Control," *Proceedings of the AIAA Guidance, Navigation and Control Conference*, pp. 1231-1246, Portland, OR, Aug. 1999.
- "Software Considerations in Airborne Systems and Equipment Certification," RTCA, Inc., DO-178B, Washington, DC, Dec. 1992.
- Vachon M., Ray R., Walsh K., Ennix, K., "F/A-18 Aircraft Performance Benefits Measured During the Autonomous Formation Flight Project," AIAA 2002-4491, Aug. 2002
- Williams, J.H., "Description of the FAA Avionics Certification Process", 1997.
- Wolfe, J.D., Chichka, D.F., and Speyer, J.L., "Decentralized Controllers for Unmanned Aerial Vehicle Formation Flight," AIAA Paper 96-3833, Jul. 1996.

