Air Transport Systems Cost and Weight Analysis

Adam Diedrich 2-23-2004 16.886

Outline

- Weight Estimation
 - Effect on Design
 - Methods
- Cost Estimation
 - Standard Breakdowns
 - Methods
 - Cost Reduction
- Integration

Weight Breakdown in Design

- Weight prediction will highlight effect of fuel savings
- 1 lb less fuel is X lb less structure, which was hauled by more fuel which, etc
 - So, in current A/C, fuel savings opens up more range, other missions.
 - In design of new A/C, fuel savings can change size/weight/cost/configuration of aircraft.

Weight Prediction Methods

- Analytical Methods
 - Analysis of structural needs produces component weights (need detailed aircraft data)
 - Add systems/payload weights (avionics, seats, cargo handling equip, hydraulics, etc)
- Empirical Methods
 - Statistics from other aircraft used to predict weight of various components (fewer details needed)

Cost Breakdown for Air Transport

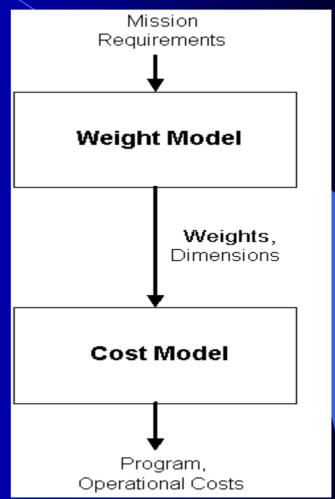
- Manufacturer
 - Eng/Development
 - Tooling
 - Flight Test
 - QA
 - Manufacturing

- Operator
 - Fuel
 - Crew
 - Capital
 - Maintenance
 - Support

Costing Methods

- Parametric Cost Estimating
 - RAND-DAPCA IV
 - Statistical fit of aircraft development, production, operational costs
- Markish Valuation Techniques
 - Per-Lb breakdown of aircraft design program costs by component and source (engineering, tooling, etc)

Parametric Cost Estimating


- Especially useful in military market analysis
 - Can separate RDT&E costs
 - Can give cost/airframe all inclusive
 - Allows comparison with existing systems for cost, performance benefits
 - Developed using military aircraft as input data

Cost Reduction

- Must model proposed cost reduction techniques
 - MDO in conceptual phase
 - Reduced engineering hours
 - Lean manufacturing
 - Reduced manufacturing costs, higher learning rate
 - Autonomy (?)
 - Reduced crew costs, increased avionics costs
 - Operational changes
 - Reduced fuel costs

Integration

- Weight Models:
 - Translate mission reqs into corresponding A/C dimensions, weight
- Cost Models:
 - Translate A/C
 dimensions, weights
 into corresponding
 program/oper costs

Questions?

References

- Raymer, Daniel P. 1999, Aircraft Design: A Conceptual Approach, AIAA
- Markish, J., "Valuation Techniques for Commercial Aircraft Program Design," MIT Masters Thesis, 2002
- Liebeck, R.H., "Aircraft Sizing," Notes from 16.885J, 2002