Introduction to Design Exploration: Design of Experiments Methods

16.90

5 May, 2014

Today's Topics

- Design of experiments (DOE) overview
- Some DOE methods
- Calculating effects
- Paper airplane experiment

Monte Carlo Simulation vs. Design of Experiments

- We use Monte Carlo simulation when we want to conduct a probabilistic analysis
- Rigorous estimates for mean, variance, probability of failure etc.
- Sometimes we just want to do some sampling to explore the design space, understand the "effects" of our design variables, etc.
\rightarrow Design of Experiments methods

Design of Experiments

- A collection of statistical techniques providing a systematic way to sample the design space
- Study the effects of multiple input variables on one or more output parameters
- Often used before setting up a formal design optimization problem
- Identify key drivers among potential design variables
- Identify appropriate design variable ranges
- Identify achievable objective function values

Design of Experiments

Design variables $=$ factors
Values of design variables = levels
Noise factors = variables over which we have no control
e.g., manufacturing variation in blade thickness
Control factors = variables we can control
e.g., nominal blade thickness
Outputs = observations (= objective functions)
$\begin{gathered}\text { Factors } \\ + \\ \text { Levels } \longrightarrow \\ \text { "Experiment" } \longrightarrow \text { Observation } \\ \text { (Often an analysis code) }\end{gathered}$

Matrix Experiments

- Each row of the matrix corresponds to one experiment.
- Each column of the matrix corresponds to one factor.
- Each experiment corresponds to a different combination of factor levels and provides one observation.

Expt No.	Factor A	Factor B	Observation
1	A1	B1	η_{1}
2	A1	B2	η_{2}
3	A2	B1	η_{3}
4	A2	B2	η_{4}

Here, we have two factors, each of which can take two levels.

Full-Factorial Experiment

- Specify levels for each factor
- Evaluate outputs at every combination of values

	complete but expensive!		
I levels	$\begin{gathered} \text { Expt } \\ \text { No. } \end{gathered}$	Factor	
		A	B
2 factors, 3 levels each:$l^{n}=3^{2}=9 \text { expts }$	1	A1	B1
	2	A1	B2
	3	A1	B3
	4	A2	B1
	5	A2	B2
4 factors, 3 levels each:$l^{n}=3^{4}=81 \text { expts }$	6	A2	B3
	7	A3	B1
	8	A3	B2
	9	A3	B3

Fractional Factorial Experiments

- Due to the combinatorial explosion, we cannot usually perform a full factorial experiment
- So instead we consider just some of the possible combinations
- Questions:
- How many experiments do I need?
- Which combination of levels should I choose?
- Need to balance experimental cost with design space coverage

Parameter Study

- Specify levels for each factor
- Change one factor at a time, all others at base level
- Consider each factor at every level

n factors	$\begin{aligned} & \text { Expt } \\ & \text { No. } \end{aligned}$	Factor			
		A	B	c	D
$1+n(1-1)$	1	A1	B1	C1	D1
\longrightarrow evaluations	2	A2	B1	C1	D1
Ilevels	3	A3	B1	C1	D1
	4	A1	B2	C1	D1
4 factors, 3 levels each:	5	A1	B3	C1	D1
	6	A1	B1	C2	D1
$1+n(l-1)=$	7	A1	B1	C3	D1
	8	A1	B1	C1	D2
$1+4(3-1)=9$ expts	9	A1	B1	C1	D3

Parameter Study

- Select the best result for each factor

Expt No.	Factor				
	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	
$\mathbf{1}$	A1	B1	C1	D1	η_{1}
$\mathbf{2}$	A2	B1	C1	D1	η_{2}
$\mathbf{3}$	A3	B1	C1	D1	η_{3}
$\mathbf{4}$	A1	B2	C1	D1	η_{4}
$\mathbf{5}$	A1	B3	C1	D1	η_{5}
$\mathbf{6}$	A1	B1	C2	D1	η_{6}
$\mathbf{7}$	A1	B1	C3	D1	η_{7}
$\mathbf{8}$	A1	B1	C1	D2	η_{8}
$\mathbf{9}$	A1	B1	C1	D3	η_{9}

1. Compare $\eta_{1}, \eta_{2}, \eta_{3}$

$$
\Rightarrow A^{*}
$$

2. Compare $\eta_{1}, \eta_{4}, \eta_{5}$

$$
\Rightarrow B^{*}
$$

3. Compare $\eta_{1}, \eta_{6}, \eta_{7}$

$$
\Rightarrow C^{*}
$$

4. Compare $\eta_{1}, \eta_{8}, \eta_{9}$

$$
\Rightarrow D^{*}
$$

"Good design" is $A^{*}, B^{*}, C^{*}, D^{*}$

- Limitations?

One At a Time

- Change first factor, all others at base value
- If output is improved, keep new level for that factor
- Move on to next factor and repeat

Expt No.	Factor				
	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	
$\mathbf{1}$	A 1	B 1	C 1	D 1	
$\mathbf{2}$	A 2	B 1	C 1	D 1	
$\mathbf{3}$	A 3	B 1	C 1	D 1	
$\mathbf{4}$	$\mathrm{~A}^{*}$	B 2	C 1	D 1	
$\mathbf{5}$	$\mathrm{~A}^{*}$	B 3	C 1	D 1	
$\mathbf{6}$	$\mathrm{~A}^{*}$	$\mathrm{~B}^{*}$	C 2	D 1	
$\mathbf{7}$	$\mathrm{~A}^{*}$	$\mathrm{~B}^{*}$	C 3	D 1	
$\mathbf{8}$	$\mathrm{~A}^{*}$	$\mathrm{~B}^{*}$	C^{*}	D 2	
$\mathbf{9}$	$\mathrm{~A}^{*}$	$\mathrm{~B}^{*}$	C^{*}	D 3	

- Limitations?

Latin Hypercubes

- Divide design space into / divisions for each factor
- Combine levels randomly
- specify / points
- use each level of a factor only once
- e.g., two factors, four levels each:

- Good option if you have many factors
- Recent work uses more sophisticated approaches (e.g., space filling designs)

Orthogonal Arrays

- Specify levels for each factor
- Use arrays to choose a subset of the fullfactorial experiment
- Subset selected to maintain "orthogonality" between factors

- Does not capture all interactions, but can be efficient
- Experiment is balanced

Orthogonal Arrays

Expt No.	Factor		
	A	B	C
$\mathbf{1}$	A 1	B 1	C 1
$\mathbf{2}$	A 1	B 2	C 2
$\mathbf{3}$	A 2	B 1	C 2
$\mathbf{4}$	A 2	B 2	C 1

Expt No.	Factor			
	A	B	C	D
$\mathbf{1}$	A1	B1	C1	D1
$\mathbf{2}$	A1	B2	C2	D2
$\mathbf{3}$	A1	B3	C3	D3
$\mathbf{4}$	A2	B1	C2	D3
$\mathbf{5}$	A2	B2	C3	D1
$\mathbf{6}$	A2	B3	C1	D2
$\mathbf{7}$	A3	B1	C3	D2
$\mathbf{8}$	A3	B2	C1	D3
$\mathbf{9}$	A3	B3	C2	D1

Effects

Once the experiments have been performed, the results can be used to calculate effects.

The effect of a factor is the change in the response as the level of the factor is changed.

- Main effects: averaged individual measures of effects of factors
- Interaction effects: the effect of a factor depends on the level of another factor

Often, the effect is determined for a change from a minus level (-) to a plus level (+) (2-level experiments).

Effects

Consider the following experiment:

- We are studying the effect of three factors on the price of an aircraft
- The factors are the number of seats, range and aircraft manufacturer
- Each factor can take two levels:

Factor 1: Seats 100<S1<150 150<S2<200

Factor 2: Range (nm) 2000<R1<2800 2800<R2<3500
Factor 3: Manufacturer M1=Boeing
M2=Airbus

Main Effects

$\begin{aligned} & \mathrm{L}_{8}\left(2^{3}\right) \\ & \text { (full factorial } \\ & \text { design) } \end{aligned}$	$\begin{aligned} & \text { Expt } \\ & \text { No. } \end{aligned}$	Seats (S)	Range (R)	Mfr (M)	Price (observation)
	1	S1	R1	M1	P_{1}
	2	S1	R1	M2	P_{2}
	3	S1	R2	M1	P_{3}
	4	S1	R2	M2	P_{4}
	5	S2	R1	M1	P_{5}
	6	S2	R1	M2	P_{6}
	7	S2	R2	M1	P_{7}
	8	S2	R2	M2	P_{8}

The main effect of a factor is the effect of that factor on the output averaged across the levels of other factors.

Main Effects

Question: what is the main effect of manufacturer? i.e., from our experiments, can we estimate how the price is affected by whether Boeing or Airbus makes the aircraft (averaged across range and seats)?

Expt No.	Seats (S)	Range (R)	Mfr (M)	Price (observation)
$\mathbf{1}$	S 1	R 1	M 1	P_{1}
$\mathbf{2}$	S 1	R 1	M 2	P_{2}
$\mathbf{3}$	S 1	R 2	M 1	P_{3}
$\mathbf{4}$	S 1	R 2	M 2	P_{4}
$\mathbf{5}$	S 2	R 1	M 1	P_{5}
$\mathbf{6}$	S 2	R 1	M 2	P_{6}
$\mathbf{7}$	S 2	R 2	M 1	P_{7}
$\mathbf{8}$	S 2	R 2	M 2	P_{8}

Computing the main effect of manufacturer

overall mean response:

$$
m=\frac{P_{1}+P_{2}+P_{3}+P_{4}+P_{5}+P_{6}+P_{7}+P_{8}}{8}
$$

$$
m_{M 1}=\frac{P_{1}+P_{3}+P_{5}+P_{7}}{4}
$$

Effect of factor level can be defined for multiple levels
main effect of mfr

$$
=m_{M 2}-m_{M 1}
$$

Main effect of factor is defined as difference between two levels

NOTE: The main effect should be interpreted individually only if the variable does not appear to interact with other variables

Main Effect Example

Expt No.	Aircraft	Seats (S)	Range $\mathbf{(R)}$	Mfr (M)	Price $\mathbf{(\$ M)}$
$\mathbf{1}$	$\mathbf{7 1 7}$	S 1	R 1	M 1	24.0
$\mathbf{2}$	$\mathrm{~A} 318-100$	S 1	R 1	M 2	29.3
$\mathbf{3}$	$\mathbf{7 3 7 - 7 0 0}$	S 1	R 2	M 1	33.0
$\mathbf{4}$	$\mathrm{~A} 319-100$	S 1	R 2	M 2	35.0
$\mathbf{5}$	$\mathbf{7 3 7 - 9 0 0}$	S 2	R 1	M 1	43.7
$\mathbf{6}$	$\mathrm{~A} 321-\mathbf{2 0 0}$	S 2	R 1	M 2	48.0
$\mathbf{7}$	$\mathbf{7 3 7 - 8 0 0}$	S 2	R 2	M 1	39.1
$\mathbf{8}$	A320-200	S 2	R 2	M 2	38.0

$100<$ S1<150	$150<$ S2<200
$2000<$ R1<2800	$2800<R 2<3500$
M1=Boeing	M2=Airbus

Sources:
Seats/Range data: Boeing Quick Looks Price data: Aircraft Value News
Airline Monitor, May 2001 issue

Main Effect Example

overall mean price $=1 / 8 *(24.0+29.3+33.0+35.0+43.7+48.0+39 \cdot 1+38.0)$ $=36.26$
mean of experiments with $\mathrm{M} 1=1 / 4^{*}(24.0+33.0+43.7+39.1)$

$$
=34.95
$$

mean of experiments with $\mathrm{M} 2=1 / 4^{*}(29.3+35.0+48.0+38.0)$

$$
=37.58
$$

Main effect of Boeing (M1) $=34.95-36.26=-1.3$
Main effect of Airbus (M2) $=37.58-36.26=1.3$
Main effect of manufacturer $=37.58-34.95=2.6$

Interpretation?

Interaction Effects

We can also measure interaction effects between factors.
Answers the question: does the effect of a factor depend on the level of another factor?
e.g., Does the effect of manufacturer depend on whether we consider shorter range or longer range aircraft?
The interaction between manufacturer and range is defined as half the difference between the average manufacturer effect with range 2 and the average manufacturer effect with range 1.

$$
\begin{gathered}
\underset{\mathrm{mfr}}{\mathrm{~m}} \times \text { range } \\
\text { interaction }
\end{gathered}=\frac{\begin{array}{l}
\text { avg mfr effect } \\
\text { with range } 2
\end{array}-\begin{array}{c}
\text { avg mfr effect } \\
\text { with range 1 }
\end{array}}{2}
$$

Interaction Effects

range R1 : expts 1,2,5,6 range R2 : expts $3,4,7,8$

Expt No.	Seats $\mathbf{(S)}$	Range $\mathbf{(R)}$	Mfr (M)	Price $\mathbf{(\$ M)}$
$\mathbf{1}$	S 1	R 1	M 1	24.0
$\mathbf{2}$	S 1	R 1	M 2	29.3
$\mathbf{3}$	S 1	R 2	M 1	33.0
$\mathbf{4}$	S 1	R 2	M 2	35.0
$\mathbf{5}$	S 2	R 1	M 1	43.7
$\mathbf{6}$	S 2	R 1	M 2	48.0
$\mathbf{7}$	S 2	R 2	M 1	39.1
$\mathbf{8}$	S 2	R 2	M 2	38.0

$$
\begin{gathered}
\mathrm{mfr} \times \text { range } \\
\text { interaction }
\end{gathered}=\frac{0.45-4.8}{2}
$$

Interpretation of Effects

Main effects are the difference between two averages

seats

range

$$
\begin{aligned}
& \text { main effect } \\
& \quad \text { of } \mathrm{mfr}
\end{aligned}=\frac{\left(P_{8}+P_{6}+P_{4}+P_{2}\right)-\left(P_{7}+P_{5}+P_{3}+P_{1}\right)}{4}
$$

Interpretation of Effects

Interaction effects are also the difference between two averages, but the planes are no longer parallel

$\mathrm{mfr} \times$ seats

Expt No.	Seats (S)	Range (R)	Mfr (M)
$\mathbf{1}$	S 1	R 1	M 1
$\mathbf{2}$	S 1	R 1	M 2
$\mathbf{3}$	S 1	R 2	M 1
$\mathbf{4}$	S 1	R 2	M 2
$\mathbf{5}$	S 2	R 1	M 1
$\mathbf{6}$	S 2	R 1	M 2
$\mathbf{7}$	S 2	R 2	M 1
$\mathbf{8}$	S 2	R 2	M 2

Design Experiment

Objective: Maximize Airplane Glide Distance

Design Variables:
Weight Distribution
Stabilizer Orientation
Nose Length
Wing Angle

Three levels for each design variable.

Design Experiment

Full factorial design : $3^{4}=81$ experiments We will use an $\mathrm{L}_{9}\left(3^{4}\right)$ orthogonal array:

Expt No.	Weight \mathbf{A}	Stabilizer B	Nose \mathbf{C}	Wing \mathbf{D}
$\mathbf{1}$	A1	B1	C1	D1
$\mathbf{2}$	A1	B2	C2	D2
$\mathbf{3}$	A1	B3	C3	D3
$\mathbf{4}$	A2	B1	C2	D3
$\mathbf{5}$	A2	B2	C3	D1
$\mathbf{6}$	A2	B3	C1	D2
$\mathbf{7}$	A3	B1	C3	D2
$\mathbf{8}$	A3	B2	C1	D3
$\mathbf{9}$	A3	B3	C2	D1

Design Experiment

Things to think about ...

Given just 9 out of a possible 81 experiments, can we predict the optimal airplane?

Do some design variables seem to have a larger effect on the objective than others (sensitivity)?

Are there other factors affecting the results (noise)?

MIT OpenCourseWare
|http://ocw.mit.edu

16.90 Computational Methods in Aerospace Engineering

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

