Introduction to Design Optimization

16.90 12 May, 2014

1

Willcox, 16.90, Spring 2014

Today's Topics

- Unconstrained optimization algorithms (cont.)
- Computing gradients
- The 1D search in an optimization algorithm
- Surrogate models
- Least squares fitting of a response surface

Design Optimization Problem Statement

The design problem may be formulated as a problem of Nonlinear Programming (NLP)

 $\min \mathbf{J}(\mathbf{x},\mathbf{p})$ s.t. $\mathbf{g}(\mathbf{x},\mathbf{p}) \leq 0$ where $\mathbf{J} = \begin{bmatrix} J_1(\mathbf{x}) & \cdots & J_z(\mathbf{x}) \end{bmatrix}^T$ $h(\mathbf{x}, \mathbf{p})=0$ $\mathbf{x} = \begin{bmatrix} x_1 & \cdots & x_i & \cdots & x_n \end{bmatrix}^T$ $x_{i \ LB} \le x_i \le x_i \ (i = 1, ..., n)$ $\mathbf{g} = \left[g_1(\mathbf{x}) \cdots g_{m_1}(\mathbf{x}) \right]^T$ $\mathbf{h} = \begin{bmatrix} h_1(\mathbf{x}) \cdots h_{m_2}(\mathbf{x}) \end{bmatrix}^T$

Gradient-Based Optimization Process

Unconstrained Problems: Gradient-Based Optimization Methods

- First-Order Methods
 - use gradient information to calculate S
 - steepest descent method
 - conjugate gradient method
 - quasi-Newton methods
- Second-Order Methods
 - use gradients and Hessian to calculate ${\boldsymbol{\mathsf{S}}}$
 - Newton method
- Often, a constrained problem can be cast as an unconstrained problems and these techniques used.

Steepest Descent

- doesn't use any information from previous iterations
- converges slowly
- α is chosen with a 1-D search (interpolation or Golden section)

Conjugate Gradient

$$S^{1} = -\nabla J(\mathbf{x}^{0})$$
$$S^{q} = -\nabla J(\mathbf{x}^{q-1}) + \beta^{q}S^{q-1}$$

$$eta^{q} = rac{\left|
abla J(\mathbf{x}^{q-1})
ight|^{2}}{\left|
abla J(\mathbf{x}^{q-2})
ight|^{2}}$$

- search directions are now conjugate
- directions S^j and S^k are conjugate if S^{jT} H S^k = 0 (also called H-orthogonal)
- makes use of information from previous iterations without having to store a matrix

Geometric Interpretation

Figures from "Optimal Design in Multidisciplinary Systems," AIAA Professional Development Short Course Notes, September 2002.

Newton's Method

Taylor series:

$$J(\mathbf{x}) \approx J(\mathbf{x}^{0}) + \nabla J(\mathbf{x}^{0})^{T} \delta \mathbf{x} + \frac{1}{2} \delta \mathbf{x}^{T} \mathbf{H}(\mathbf{x}^{0}) \delta \mathbf{x}$$

where $\delta \mathbf{x} = \mathbf{x} - \mathbf{x}^{0}$
differentiate: $\nabla J(\mathbf{x}) \approx \nabla J(\mathbf{x}^{0}) + \mathbf{H}(\mathbf{x}^{0}) \delta \mathbf{x}$

at optimum $\nabla J(\mathbf{x}^*)=0$ $\Rightarrow \nabla J(\mathbf{x}^0) + \mathbf{H}(\mathbf{x}^0)\delta \mathbf{x} = 0$

$$\delta \mathbf{x} = - \left[\mathbf{H}(\mathbf{x}^0) \right]^{-1} \nabla J(\mathbf{x}^0)$$

Newton's Method

$$\mathbf{S} = - \left[\mathbf{H}(\mathbf{x}^0) \right]^{-1} \nabla J(\mathbf{x}^0)$$

- if $J(\mathbf{x})$ is quadratic, method gives exact solution in one iteration
- if J(x) not quadratic, perform Taylor series about new point and repeat until converged
- a very efficient technique if started near the solution
- H is not usually available analytically, and finite difference is too expensive (*n*×*n* matrix)
- **H** can be singular if *J* is linear in a design variable

Quasi Newton

$\mathbf{S}^q = -\mathbf{A}^q \nabla J(\mathbf{x}^{q-1})$

- Also known as variable metric methods
- Objective and gradient information is used to create an approximation to the inverse of the Hessian
- A approaches H⁻¹ during optimization of quadratic functions
- Convergence is similar to second-order methods (strictly 1st order)
- Initially: A=I, so S^1 is steepest descent direction then: $A^{q+1} = A^q + D^q$ where **D** is a symmetric update matrix $D^q = fn(x^{q}-x^{q-1}, \nabla J(x^q)-\nabla J(x^{q-1}), A^q)$
- Various methods to determine D
 e.g., Davidon-Fletcher-Powell (DFP)
 Broydon-Fletcher-Goldfarb-Shanno (BFGS)

Computing Gradients Using Finite Difference Approximation

The 1D Search

Surrogate Models

Data Fit Methods

- Sample the simulation at some number of design points
 - Use DOE methods (e.g., Latin hypercube) to select the points
- Fit a surrogate model using the sampled information
- Surrogate may be global (e.g., quadratic response surface) or local (e.g., Kriging interpolation)
- Surrogate may be updated adaptively by adding sample points based on surrogate performance (e.g., Efficient Global Optimization, EGO)

Polynomial Response Surface Method

- Surrogate model is a local or global polynomial model
- Can be of any order
 - Most often quadratic; higher order requires many samples
- Advantages: Simple to implement, visualize, and understand, easy to find the optimum of the response surface
- Disadvantages: May be too simple, doesn't capture multimodal functions well

Global Polynomial Response Surface

- Fit objective function with a polynomial
- e.g., quadratic approximation to a function of n design variables x₁, x₂, ..., x_n

$$J(\mathbf{x}) = c_0 + c_1 x_1 + c_2 x_2 + \ldots + c_n x_n + c_{n+1} x_1^2 + c_{n+2} x_1 x_2 + \ldots + c_{p-1} x_n^2$$

- Coefficients determined using a least squares fit to available data
- Update model by including a new function evaluation then doing least squares fit to compute the new coefficients

Fitting a Polynomial Response Surface

Polynomial Response Surface Method

Matlab demo: Peaks function

Summary

- From this lecture and the online notes you should:
 - Have an understanding of how a design problem can be posed as an optimization problem
 - Have a basic understanding of the steps in the gradient-based unconstrained optimization algorithms
 - Be able to estimate gradient and Hessian information using finite difference approximation
 - Understand how to construct a polynomial response surface using least-squares regression and how to measure the quality of fit.

MIT OpenCourseWare http://ocw.mit.edu

16.90 Computational Methods in Aerospace Engineering Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.