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Today’s Topics 

• Unconstrained optimization algorithms (cont.) 
• Computing gradients 
• The 1D search in an optimization algorithm 
• Surrogate models 
• Least squares fitting of a response surface 
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Design Optimization Problem Statement 
The design problem may be formulated as a problem of  

min J x p, 

s.t.   g(x,p)  0   
        h(x,p)=0
xi , ,LB  x xi  i UB (i n 1, ..., )

Nonlinear Programming (NLP) 
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Gradient-Bntnt-B

x0, q=0 

Calculate J(xq)

Calculate Sq 

q=q+1 

Perform 1-D search 
xq = xq-1 + qa Sq 

no yesConverged? Done 
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Unconstrained Problems: Unconstrained Problems: 
Gradient

Unconstrained Problems: 
ntnt
Unconstrained Problems: Unconstrained Problems: Unconstrained Problems: 
ntnt

•  First-Order Methods 
–  use gradient information to calculate S
–  steepest descent method 
–  conjugate gradient method 
–  quasi-Newton methods 

•  Second-Order Methods 
–  use gradients and Hessian to calculate S
–  Newton method 

•  Often, a constrained problem can be cast as an unconstrained 
problems and these techniques used. 
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Steepest Descent 

Sq = -J(xq-1) -J(x) is the direction of 
max decrease of J at x

Algorithm: 
choose x0, set x=x0 

repeat until converged: 
S = -J(x) 
choose a to minimize J(x+aS) 
x = x + aS 

• doesn’t use any  information from previous iterations 
• converges slowly 
 a is chosen with a 1-D search (interpolation or Golden section) 
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Conjugate Gradient 

S1 = -J(x0)
Sq = -J(xq-1) + bqSq-1

x
2

 

q
J( )q 1

b 
( )

2
J q2 x

•  search directions are now conjugate 
• directions Sj and Sk are conjugate if SjT H Sk = 0 

(also called H-orthogonal) 
•  makes use of information from previous iterations 

without having to store a matrix 
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Geometric Interpretation 

Steepest descent Conjugate gradient 

Figures from “Optimal Design in Multidisciplinary Systems,” AIAA 
Professional Development Short Course Notes, September 2002. 
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Newton’s Method 

Taylor series: 

x T 1J J(x) ( )0 0J( ) T ( )0   x  x  x H x  x
2

where

differentiate: 

0  x x x
0 0( ) ( ) ( )J J    x x H x x

at optimum J(x*)=0 
0 0 J( )x  H x( ) x  0

H x
1

 x ( )0 0

   
  J( )x
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Newton’s Method 

S   ( )
10 0

  H x J( )x

•  if J(x) is quadratic, method gives exact solution in one iteration 

•  if J(x) not quadratic, perform Taylor series about new point and 
repeat until converged 

•  a very efficient technique if started near the solution 

•  H is not usually available analytically, and finite difference is too 
expensive (nn matrix)

•  H can be singular if J is linear in a design variable 
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Quasi Newton 
Sq = -Aq J(xq-1)

• Also known as variable metric methods 
• Objective and gradient information is used to create an 

approximation to the inverse of the Hessian 
•  A approaches H-1 during optimization of quadratic functions 
•  Convergence is similar to second-order methods (strictly 1st order)

•  Initially: A=I, so S1 is steepest descent direction 
then: Aq+1 = Aq + Dq

where D is a symmetric update matrix 
Dq = fn(xq-xq-1, q q-1 qJ(x )- J(x ), A )

•  Various methods to determine D
e.g., Davidon-Fletcher-Powell (DFP) 
Broydon-Fletcher-Goldfarb-Shanno (BFGS) 
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Computing Gradients Using Finite Computing Gradients Using Finite 
Difference Approximation 
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The 1D The 1D 
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Surrogate Models 
from Choi et al. 

Data-fit models Simplified 
physics models 

Projection-based reduced models 
• Exploit problem structure 
• Embody underlying physics 

= + = +

=
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Data Fit Methods 

•  Sample the simulation at some number of design 
points 
–  Use DOE methods (e.g., Latin hypercube) to select the 

points

•  Fit a surrogate model using the sampled information 

•  Surrogate may be global (e.g., quadratic response 
surface) or local (e.g., Kriging interpolation) 

•  Surrogate may be updated adaptively by adding 
sample points based on surrogate performance 
(e.g., Efficient Global Optimization, EGO) 
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Polynomial Response Surface Method 

•  Surrogate model is a local or global polynomial model 

•  Can be of any order 
– Most often quadratic; higher order requires many samples 

•  Advantages: Simple to implement, visualize, and 
understand, easy to find the optimum of the response 
surface 

• Disadvantages: May be too simple, doesn’t capture 
multimodal functions well 
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Global Polynomial Response Surface 
•  Fit objective function with a polynomial 

•  e.g., quadratic approximation to a function of 
n design variables x1, x2, …, xn

•  Coefficients determined using a least squares 
fit to available data 

•  Update model by including a new function  
evaluation then doing least squares fit to  
compute the new coefficients 
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Fitting a Polynomial Response Surface 



Polynomial Response Surface Method 

Matlab demo: Peaks function 
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Summary 

•  From this lecture and the online notes you 
should: 
– Have an understanding of how a design problem can 

be posed as an optimization problem 
– Have a basic understanding of the steps in the 

gradient-based unconstrained optimization algorithms 
– Be able to estimate gradient and Hessian information 

using finite difference approximation 
– Understand how to construct a polynomial response 

surface using least-squares regression and how to 
measure the quality of fit. 
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