> Welcome to 16.90 iSession
> Instructor: Turn on Webex and distribute MuddyCards
> Students: Please LOG OUT from your Facebook

Twitter
Google+
Foursquare
Email
Messenger
. . .etc. . .
. . .etc. . .
. . .etc. . .

Finite Difference approximation of partial derivatives

$\left.\frac{\partial U}{\partial x}\right|_{i} ^{n}=\frac{U_{i+1}^{n}-U_{i}^{n}}{\Delta x}$
Forward in space
$\left.\frac{\partial U}{\partial x}\right|_{i} ^{n}=\frac{U_{i}^{n}-U_{i-1}^{n}}{\Delta x}$
Backuad in space
$\left.\frac{\partial U}{\partial x}\right|_{i} ^{n}=\frac{U_{i+1}^{n}-U_{i-1}^{n}}{2 \Delta x} \quad$ Central in space
$\left.\frac{\partial U}{\partial t}\right|_{i} ^{n}=\frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t} \quad$ Forward Euler

$$
\frac{\partial U}{\partial t}+c \frac{\partial U}{\partial x}=0 \quad U(6)=U(1)
$$

Finite Difference approximation of second order spatial derivative

$$
\begin{aligned}
& \frac{\partial U}{\partial t}=k \frac{\partial^{2} U}{\partial x^{2}} \\
& \left.\frac{\partial^{2} U}{\partial x^{2}}\right|_{i} ^{n} \approx \frac{U_{i-1}^{y}-2 X_{i}^{n}+\left(U_{i-1}^{n}\right.}{\Delta x^{2}}+O\left(\Delta x^{4}\right) \\
& U_{i+1}^{n}=U_{i}^{n}+\left.\Delta x \frac{\partial V^{n}}{\partial x}\right|_{i} ^{n}+\left.\frac{\Delta x^{2}}{2} \frac{\partial^{2} V}{\partial x^{2}}\right|_{i} ^{n}+\frac{\Delta x^{3}}{b} \frac{\partial^{3} U}{\partial x^{3}} \\
& U_{i-1}^{n}=Y_{i}^{n}-\left.\Delta x \frac{\partial V}{\partial x}\right|_{i} ^{n}+\left(\left.\frac{\Delta x^{2}}{2} \frac{\partial^{2} U}{\partial x^{2}}\right|_{i} ^{n} \cdot \frac{\Delta x^{3} \xi^{3} U}{\partial x^{3}}\right. \\
& \frac{\partial^{2} U}{\partial x^{2}}-\frac{U_{i+1}-2 U_{i}+U_{i-1}}{\Delta x^{2}} \backsim O\left(\Delta x^{2}\right)+O\left(\Delta x^{4}\right)
\end{aligned}
$$

Finite Difference Simulation

Finite Difference in Matrix Form Central Difference $\left.\frac{\partial u}{\partial x}\right|_{i}=\frac{u_{i+1}-u_{i-1}}{2 \Delta x}$

Finite Difference in Matrix Form

 $\left\lvert\, \begin{aligned} & \left.\frac{\partial u}{\partial x}\right|_{1} \\ & \left.\frac{\partial u}{\partial x}\right|_{2}\end{aligned}\right.$
,

Finite Difference in Matrix Form Upwind Difference with BC

$$
\begin{aligned}
& U(x=0, t)=1 \\
& \begin{aligned}
\left.\frac{\partial U}{\partial x}\right|_{1} ^{n} & =\frac{U_{1}-U_{0}^{\prime 1}}{\Delta x} \ldots \\
& =\frac{U_{1}}{\Delta x}-\frac{1}{\Delta x} .
\end{aligned}
\end{aligned}
$$

Finite Difference in Matrix Form Second Order Derivative $\left.\frac{\partial^{2} U}{\partial x_{1}}=:=\frac{V_{i x+}}{\Delta x^{2}}\right)$

$$
\left(\begin{array}{c}
\left.\frac{\partial^{2} U}{\partial x^{2}}\right|_{1} \\
\vdots \\
\\
\\
\left.\frac{\partial^{2} U}{\partial x^{2}}\right|_{n}
\end{array}\right)=
$$

$$
=\left(\begin{array}{l}
\frac{-2}{\Delta x^{2}} \frac{1}{\Delta x^{2}} \\
\frac{1}{\Delta x^{2}} \frac{-2}{\Delta x^{2}} \frac{1}{\Delta x^{2}} \\
\frac{1}{\Delta x^{2}}
\end{array}\right.
$$

$$
\left.\begin{array}{c}
\frac{1}{\Delta x^{2}} \\
\\
\frac{1}{\Delta x^{2}} \\
\frac{1}{\Delta x^{2}}-\frac{2}{\Delta x^{2}}
\end{array}\right)\left(\begin{array}{c}
U_{1} \\
U_{2} \\
1 \\
V_{n}
\end{array}\right)
$$

Finite Difference in Matrix Form Application to Backward Euler

Finite Difference in Matrix Form Application to Trapezoidal Rule

Finite Difference in Matrix Form Application to 1D Poisson Equation

MIT OpenCourseWare
|http://ocw.mit.edu

16.90 Computational Methods in Aerospace Engineering

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

