Truncation Error in Finite Difference Backward difference in space

$$
\begin{aligned}
& \left.\frac{\partial U}{\partial x}\right|_{i} ^{n} \approx \frac{U_{i}^{n}-U_{i-1}^{n}}{\Delta x} \\
& \tau_{i}^{n}=\left.\frac{\partial U}{\partial x}\right|_{i} ^{n}-\frac{Y_{i}^{n}-U_{i-1}^{n}}{\Delta x} \\
& U_{i-1}^{n}=Y_{i}^{y}-\left.\Delta x \frac{\partial U}{\partial x}\right|_{i} ^{n}+\left.\frac{\Delta x^{2}}{2} \frac{\partial^{2} U}{\partial x^{2}}\right|_{i} ^{n}+O\left(\Delta x^{3}\right) \\
& \tau_{i}^{n}=\left.\frac{\Delta x}{2} \frac{\partial^{2} U}{\partial x^{2}}\right|_{i} ^{n}+o\left(\Delta x^{2}\right)=\frac{O(\Delta x)}{\text { First Order }}
\end{aligned}
$$

Truncation Error in Finite Difference Central difference in space

$$
\begin{aligned}
& \left.\frac{\partial U}{\partial x}\right|_{i} ^{n} \approx \frac{U_{i+1}^{n}-U_{i-1}^{n}}{2 \Delta x} \\
& \tau_{i}^{n}=\left.\frac{\partial U}{\partial x}\right|_{i} ^{n}-\frac{U_{i+1}^{n}-U_{i-1}^{n}}{2 \Delta x} \\
& U_{i+1}^{n}=X_{i}^{n}+\left.\Delta x \frac{\partial U}{\partial x}\right|_{i} ^{n}+\left.\frac{\Delta x^{2}}{2} \frac{\partial^{2} U}{\partial x^{2}}\right|_{i} ^{n}+\left.\frac{\Delta x^{3}}{6} \frac{\partial^{3} U}{\partial x^{3}}\right|_{i} ^{n} \\
& U_{i-1}^{n}=Y_{i}^{n}-\left.\Delta x \frac{\partial U}{\partial x}\right|_{i} ^{n}+\left.\frac{\Delta x^{2}}{\pi} \frac{\partial^{2} U}{\partial x^{2}}\right|_{i} ^{n}-\left.\frac{\Delta x^{3}}{6} \frac{\partial^{3} U}{\partial x^{3}}\right|_{i} ^{n} \\
& \tau_{i}^{n}=-\left.\frac{\Delta x^{2} \partial^{3} U}{6} \frac{\left.\partial x^{4}\right)}{\partial x^{3}}\right|_{i} ^{n}+O\left(\Delta x^{3}\right)=O\left(\Delta x^{2}\right) \\
& \text { Second Order }
\end{aligned}
$$

Truncation Error in Finite Difference

Error in Finite Difference Solution (Global Error)
$U(x, t)$ exact solution
$U_{i}^{n} \quad$: finite difference solution

$$
e_{i}^{n}=U_{i}^{n}-U\left(x_{i}, t_{n}\right)
$$

$\|e\|_{\infty}:=\max _{\substack{\text { All } i \\ \text { All } t_{n}<T}}\left|e_{i}^{n}\right| \quad(L-\infty$ norm $)$
A global measure of solution error

$$
\|e\|=O\left(\Delta x^{p}\right)+O\left(\Delta t^{q}\right)
$$

order of spatial discretization order of tine discretization

Consistency, Stability, Convergence

$$
\text { Consistency }:=\zeta_{i}^{n} \xrightarrow{\Delta x \rightarrow 0 \& \Delta t \rightarrow 0} 0
$$

Stability: $=$ solution won't diverge as $\Delta x \rightarrow 0$ \& $\Delta t \rightarrow 0$
(More on this soon)

Convergence of Finite Difference Solution

Finite Difference for Multi-D Partial Differential Equations

Example: Advection in 2D:

$$
\frac{\partial U}{\partial t}+c_{x} \frac{\partial U}{\partial x}+c_{y} \frac{\partial U}{\partial y}=0
$$

Conservation Law:

$$
\vec{F}=\left(c_{x} U, c_{y} U\right)
$$

FD Discretization of in 2D

$U_{i, j}^{n} \approx V\left(x_{i}, y_{j}, t_{n}\right)$

$$
\begin{aligned}
& \text { FD for 2D Advection Equation } \\
& j=4 \stackrel{\substack{\boldsymbol{y} \\
\uparrow} \stackrel{h}{\longleftrightarrow}}{\left.\stackrel{\partial U}{\partial x}\right|_{i j}} \frac{V_{i, j}-V_{i-1 j}}{\Delta x}
\end{aligned}
$$

$$
\begin{aligned}
& j=2 \\
& j=1 \\
& j=0 \quad|\quad| \\
& \left.\left.\right|_{4} ^{\longrightarrow x} \frac{\partial U}{\partial x}\right|_{i, j} \sum_{i+1, j}-U_{i-1, j} \\
& \text { Central-in-space }\left.\frac{\partial U}{\partial y}\right|_{i, j,} \sim \frac{U_{i, j+1}-U_{i, j-1}}{2 \Delta y}
\end{aligned}
$$

$\frac{\partial U}{\partial x}$. Back-ix-space:Matrix form

$$
\begin{aligned}
& \frac{\partial u}{\partial y}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

16.90 Computational Methods in Aerospace Engineering

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

