
16.90 Project 2

Spring 2014

1 Fluid Part

1.1

We begin by writing the energy conservation equation in conservation form.

dTt,cool
cpṁ

dx
= 2~q · ~n (1)∫

cpṁ
dTt,cool

dx =
dx

∫
2~q · ~n dx (2)

cpmT˙ t,cool(x) =

∫
2~q · ~n dx+ c (3)

The integration constant c imposes the boundary conditions at x = 0. This form relates the
flux through the control volume to the source. For this situation, the flux function is

F (x) = cpmT˙ t,cool(x) (4)

The source for this problem is the heat transfer through the turbine blade metal to the

cooling flow. This can be expressed as S(x) = 2~q · ~n . Integrating the source function of

some control volume∫ i gives the heat that is added to that control volume. This can be
x

expressed as Qi = R 2~q
xL

· ~n dx where xL and xR are the left and right hand boundaries of

the control volume, respectively.

1.2

We examine the domain x ∈ [0, 1cm] = [0, 0.01][m]. The upwind flux is defined as

Fi+ 1 = F (T + i) (5)
2

We discretize the domain into N control volumes.

1 2 ... i− 1 i i+ 1 ...

1

The boundaries of the ith control volume are given by xi− 1
2

and xi+ 1 which correspond
2

to the left and right boundaries, respectively. In general, this system can be written as

Fi+ 1
2
− Fi− 1

2
=

∫ x
i+1

2

x
i− 1

2(1− 100x)dx (6)

2 ∣∣∣x 1i+

F (Ti)− F (T 1) = 2x− 100x2
i− ∣ 2

x
i− 1

2

= Si (7)

Here, Fi+ 1
2

is the flux through the right hand boundary of control volume i, while Fi− 1
2

is the flux through the left hand boundary of the ith control volume. Since we, are using
an upwind flux, Fi+ 1 = F (Ti) which means that the flux at the right hand boundary is

2

equal to the flux as a function of the average value of the cell, which in this problem is the
temperature of the ith cell. This means that Fi− 1 is equal to the flux as a function of Ti

2
−1,

the temperature of the i − 1 control volume. Thus, we can write the discretization in the
following form, noting that F (Ti) = cpmT˙ i.

x 1i+

cpṁ(Ti − Ti−1) = 2x− 100x2

∣∣∣∣ 2

x
i− 1

2

Ti − Ti−1 =
2x− 100x2 x

cpṁ

∣∣∣ 1i+∣ 2

x
i− 1

2

= Qi

Ti − Ti−1 =
1

cpṁ
[2xi+ 1

2
− 100x2

i+ 1
2
− 2xi− 1

2
+ 100x2

i− 1
2
] = Qi (8)

dT
The above equation denotes our discretization of the original equation cpṁ = 2~q

dx
· ~n.

1.3

To solve this equation, we first build a system of N linear equations, where N is equal to
the number of control volumes. We use the following discretization, which is the same as in
part 2, equation (8), of this problem.

In code we compute Qi by computing

6
q(x) = (2x− 100 2 1e

x)
cpṁ

Qi = q(xi+ 1
2
)− q(xi− 1)

2

The 1× 106 term is to convert to watts, since the ~q · ~n function as given was in megawatts.
We set the boundaries of the control volumes as being equal to the domain from 0 to 0.01

1
discretized by dx =

N
. Thus, the values of xi+ 1

2
and xi− 1 are multiples of dx.

2

We next write equation (8) in matrix form.

2

 1 0 · · ·

 T1

−1 1 0

· · · T2

.

0 −1 1 0 · · · ..
.

Q

=

 1

 Q2

 . ..

N

QN

T

This can be summarized as
AT = Q (9)

To enforce the boundary condition, we note that over control volume 1

1
T1 − T0 =

× 106
dx

2
cpṁ

[
x− 100x2

]
0

1
T1 = T0 +

× 106
dx

2(
cpṁ

[
dx)− 100(dx)2

]
0

1
Q1 =

× 106

c

[
2(dx) 2

pṁ
− 100(dx)

where T0 = 800K, the temperature of the air at the left most

]
boundary, which is the inlet

to the interior of the blade.
We now solve this system of equation using ‘\’ command.

T = A\Q

This results in a set of N temperatures, which in turn correspond to the values of t for each
of the N control volumes.

We now compute the analytic solution.

dTt,cool
cpṁ

dx
= 2~q · ~n

cpṁ
dTt,cool

= 2(1
dx

− 100x)(1× 106)∫
dTt,cool

cpṁ dx =
dx

∫
(1− 100x)(2× 106)dx

cpmT˙ (x) = 1× 106(2x− 100x2) + c

1 6

T (x =
× 10

) (2x
cpṁ

− 100x2) + c

We use the boundary condition T (0) = 800K to determine c. We also note that ṁ = 0.05
kg/m and cp = 1000 J/kg-K.

1
800 =

× 106

®,MATLAB S

(2(0)
(0.05)(1000)

− 100(0)) + c

⇒ c = 800K

3

1
Thus, Tanalytic(x) =

× 106

(2x− 100x2) + 800 for any general cp and ṁ.
cpṁ

Tanalytic(x) = 2× 104(2x− 100x2) + 800 (10)

We can now compute the analytic solution at any point x.
In order to compute the error of the discretization, we note that each Ti temperature in

the ith control volume is an average value over the domain of the control volume. Thus, we
wish to compare the value of the temperature in the ith control volume with the average

¯of the∫ analytic solution over the same control volume. To do this, we recall that f =
1 x+∆x

f(x)dx. Thus,
∆x x

1
T̄ (x) =

∆x

∫ x+∆x

T (x)dx
x

1 x+∆x

= dx
∆

∫
2 (2

x x

× 104 x− 100x2) + 800

1
=

∆x

[x+∆x
100

2× 104

(
x2 − x3

)
+ 800x

3

]
x

In MATLAB we compute,

1
Tav(x) =

× 106
(
x2 100− x3 (11)

pṁ 3

)
+ 800

c

We then compute
1

T̄ (x) = (Tav(x+ ∆x)− Tav(x))
∆x

This gives us the average value of Tanalytic over any domain [x, x+ ∆x]. For each control
volume, these values are the left and right boundaries, which were also used to compute the
values of Qi.

We next compute the maximum error between the discretization and the analytic solution
| ¯ ¯by computing max(T −T |) where T is a vector of the average values of the analytic solution

computed over the control volumes, and T is the vector of the values of Ti, the temperature
in each control volume.

It could be said that equation (11) is unnecessary since the average value of the analytic
solution in each cell is the same as the value at the midpoint. However, the formulation
of equation (11) eliminates any doubt about guessing the value of the average temperature
using the analytic solution.

We next set the acceptable tolerance to 5 Kelvin and run the solver for values of N until
the desired tolerance is met. The results are plotted below.

4

The analysis shows that for 40 control volumes , the maximum difference between the
values of the N control volumes and the average value of the analytic function over these N
control volumes is 5 Kelvin or less.

There are a couple of interesting things to note about the results of this analysis. First,
we note that the value of TR for each control volume is equal to the analytic solution at
that boundary. This makes sense due to our method for computing Ti. Since equation (8)
integrates the source over the control volume and adds it to the value of TL, we expect that
given the first T2 = T0, which is the boundary condition, that we will always return the value
of the analytic solution at all xR = xi+ 1 . This results in our approximation overshooting the

2

analytic solution at almost all points.
To examine the order of convergence, we compute the maximum error over a vector of

Ns. Here we choose N = [0.1 1 10 100]. We compute the maximum error for each value of
n and plot them versus N on a loglog plot.

5

The results show that the order of convergence is O(N1) . As N is increased by a factor

of 10, the error is subsequently reduced by the same factor. This makes sense because
we know that Ti = Tanalytic(xRi). As the distance between xL and xR decreases, so too
does the difference between T (xR) and T (xL) by the same amount, since T (x) is quadratic.

dT (x)
Consecutive values of T (x) converge with the order of x of the derivative of T . Since

dx
=

O, we expect the convergence between points to be of the same order. This means that since
values of Ti and T (xi+ 1) are equal, we also expect the error between our discretization and

2

the analytic solution to converge at the same rate. The numerical results presented in the
above plot confirm this for us.

1.4

If the control volumes was non-uniform, the finite volume method would be able to approx-
imate the analytical solution. This can be done by using the derivative of the function to
intelligently change the size of the control volumes. For regions where the derivative is large,
the grid spacing could be reduced, resulting in a better approximation and thus reducing
the overall error. By the same logic, the grid spacing for regions where the temperature is
relatively constant can be increased. The implementation of the discretized governing equa-
tions would be the same. Care would have to be taken, however, to make sure that the grid
spacing did not hide key elements to the solution, such as small oscillations or discontinuities
that would be hidden by the non-uniform grid.

6

If the heat flux was a piecewise-linear function, we most likely see a reduction in the
error between the analytic and FVM solutions. Due to our definition of the flux function,
it is reasonable to assume that if the heat flux function was piecewise linear, each control
volume could be constructed along the breakpoints in the heat flux function. Thus, each
control volume could be constructed to contain linear values between T (xi− 1

2
) and T (xi+ 1).

2

This would result in the control volumes approximating the analytic solution in a much more
accurate way than when the heat flux is quadratic. This is because the midpoint for each
control volume and the analytic solution would be the same, or at least very close, thereby
greatly reducing the error for a given N control volumes. Care would have to be taken in
the construction of the grid for the full benefits of this to be realized. However, with careful
construction of the domain, the solution has the potential to be very accurate.

2 Thermal Part

2.1

From the problem statement we begin with

~q = −k∇T (12)

~q · ~n = h(T − Tt) (13)

We now derive the boundary conditions for the blade.

7

Boundary 1 is adiabatic. Thus, on boundary 1 we have ~q · ~n = 0 Boundary 2, 3, and 4
are governed by equation (13). Over the surface we have the following conservation:∫

~q · ~n ds =
δΩ

∫
h(T Tt) ds = k T ~n ds

δΩ

−
∫
δΩ

− ∇ ·

Thus, for boundaries 2 and 3, which are on the hot side, we have∫
h(T − Tt) ds+

∫
k∇T · ~n ds = 0

δΩ2,3 δΩ2,3

⇒ h(T − Tt,hot) + k∇t · ~n = 0

⇒ k∇T · ~n+ hT = hTt,hot

Similarly, for boundary 4 we have the same general equation, but instead substitute in
Tt,cool for Tt,hot, the exterior temperature.

∇T · ~n+ hT = hTt,cool

Thus, the boundary conditions are given by

1 : − k∇T = 0

2 : k∇T · n~2 + hT = hTt,hot

3 : k∇T · n~3 + hT = hTt,hot

4 : k∇T · n~4 + hT = hTt,cool

There are three types of boundary conditions that have been discussed in class thus far.

Dirichlet → T̃ known on the boundary

Neumann → T̃x known on the boundary

Robin → ˜ ˜α0T + α1Tx known on the boundary

By examining the boundary conditions derived above, it can be seen that on boundary
1, since ∇T = 0 is known, we have a Neumann boundary condition. On the other three
boundaries the equation is of the form k∇T · ~n + hT = hTt. This is a Robin boundary
condition with α0 = h and α1 = k.

Thus, the boundary conditions are as follows:

Boundary Equation Type

1 ∇T = 0 Neumann

2 k∇T · n~2 + hT = hTt,hot Robin

3 k∇T · n~3 + hT = hTt,hot Robin

4 k∇T · n~4 + hT = hTt,cool Robin

8

2.2

We now wish to find the residuals in their weak form. We begin with equation (1) from the
prompt.

0 = ∇ · (k∇T) (14)

For the equation to be conservative, the following must be true:

0 =

∫
Ω

∇ · (k∇T) dA (15)

We now find the weighted residual.

R =

∫
w

Ω

∇ · (k∇T) dA (16)

Since we do not know ∇2T and we wish for the order of the derivative on the weight function
and the approximation to be equal, we use integration by parts to separate the residual.

R =

∫
w∇ · (k∇T) dA =

∫
wk∇T · ~n ds T

Ω δΩ

−
∫
∇w · (k

Ω

∇) dA

We have thus obtained the weak form of the residual.

R =

∫
wk

δΩ

∇T · ~n ds−
∫

Ω

∇w · (k∇T) dA (17)

Applying the boundary conditions, we find the bilinear form. This has looks the same as
the residual due to the nature of the boundary conditions. The bilinear form is made up of
all the terms that depend on w and T .

R =

∫
wk

δΩ

∇T · ~n ds−
∫
∇w · (k∇T) dA

Ω

(18)

Note that without the boundary conditions, the heat is totally conserved, which means
that all heat flow depends on the temperature of the element, with no additional source
terms.

We not add the boundary conditions previously derived.

9

R =

∫
wk∇T · ~n dx−

∫
∇w · (k T

δΩ Ω

∇) dA

=

∫
w(−q1 · n~1) ds+

∫
w(n

Ω1 δΩ2

−q2 · ~2) ds+
δ

∫
w(

δΩ3

−q3 · n~3) ds

+

∫
w(q4 n~4) ds w (k T) dA∫δΩ4

− · −
∫

Ω

∇ · ∇

= w(0) ds+
δΩ1

∫
wh(Tthot

δΩ2

− T) ds+

∫
wh(Tthot

δΩ3

− T) ds

+

∫
wh(Ttcool T

δΩ4

−) ds−
∫

Ω

∇w · (k∇T) dA

R =

∫
whTthot ds−

∫
whT ds+∫ δΩ2

∫
whTthot ds−

∫
whT ds

+ whTtcool ds
δΩ4

−
∫δΩ2 δΩ3 δΩ3

whT ds
δΩ4

−
∫

Ω

∇w · (k∇T) dA

Reorganizing this we get

R =

∫
whTthot ds+

δΩ2

∫
whTthot ds+

δΩ3

∫
whTtcool ds∫ ∫ δΩ4

− whT ds
δΩ2

− whT ds
δΩ3

−
∫

whT ds
δΩ4

−
∫

Ω

∇w · (k∇T) dA (19)

This is the fully expanded form of the weighted residual. This has changed the bilinear
form and the linear functionals. By adding in the boundary conditions, we have added some
source terms. We now have the following:

Bilinear Form:−
∫

whT ds−
∫

whT ds hT
Ω2 δΩ3

−
∫

w ds
δ δΩ4

−
∫

Ω

∇w · (k∇T) dA

Linear Functional:

∫
whTthot ds+ hT ds

2

∫
w thot ds+

δΩ δΩ3

∫
whTtcool

δΩ4

We now implement the above equations into a MATLAB function. The skeleton code
provided asks for four lines of inputs as follows:

a b
Medge =

c d

∇φ(ξ) =

K(I, I) = K

(I, I)

+ ...

10

F (I) = F (I) + ds ∗ ...

In order to compute these lines, we note that for the above residual we have made a
Galerkin approximation. This means that

wj = φj
N

T̃ =
∑

aiφi
i=1

We also note that we are using the following mapping for the reference element.

φ1(ξ1, ξ2) = 1− ξ1 − ξ2

φ2(ξ1, ξ2) = ξ1

φ3(ξ1, ξ2) = ξ2

Thus the gradient is given by
∂φ1

1,

∇φi(ξ ξ2) =

∂ξ1

∂φ1

∂ξ2

∂φ2

∂ξ1

∂φ2

∂ξ2

∂φ3

∂ξ1

∂φ3

0 1

 =

 −1 −1 1 0

∂ξ

2

To compute K we note that this statement corresp

onds to∫

Ω

∇w · (k∇T) dA

11

We now transform into the reference frame.

Ki,j =

∫
Ω

∇φ(x, y) ·− k
∑N

(
i=1

∇φi) dxdy

=

∫
∇φ(ξ1, ξ2) · k∇φi(ξ1, ξ2)Ax,y dξ1dξ2

Ω

Since ∇φ(ξ1, ξ2) is a constant we have Ki,j = k∇φj · ∇φiAx,y where A is the area of the
element and has already been computed by the skeleton code. The dot product ∇φj · ∇φi
is a dot product. In matrix algebra this means that we need to compute ∇φ∇φ′. This will
yield a 3× 3 matrix.

2

∇φ∇φ′ =

 −1 −1 −1 1 0

1 0 1

−

In code we simply state that

K(I, I) = K(I, I) + k∇φ∇φ′A

We now move onto the boundary elements. We start with the constants φj(x, y)hTt dsδΩ

where we have substituted in φj for wj. We again transform into the reference

∫
coordinates:∫

φj(x, y)hTt ds = hTt

∫
φj(ξ1, ξ2)

δΩ

|dsx,y| dsξ

= hTt|dsx,y|
∫
φj(ξ1, ξ2) dsξ

Here |dsx,y| is the length of the edge and has already been computed by the code by finding
the length based on the x, y coordinates of the nodes.

We thus need to compute
∫
φj(ξ1, ξ2) ds over all of the possible edges. Beginning with

edge 1, we compute the integral.∫ 1

φ1 dξ1 =
0

∫ 1

1
0

− ξ1 dξ1

=

(
ξ2

ξ1 − 1
1

2

∣∣∣∣
0

= 1− 1/2

= 1/2

1
We note that the integral over edge 2 has the same form as that over edge 1, so φ1 dξ2 =

0
1 1

1/2. Additionally,
∫
φ2 dξ1 =

∫
φ3 dξ2 = 1/2. Over edge 3 we note that the

0 0

∫
area under

the curve is 1/2 for both φ2 and φ3.

12

The results of the integration show that hTtφ ds = 0.5HTt|ds| for boundaries 2, 3, and
4 of the blade. Thus, in the code

∫
F (I) = F (I) + 0.5Th|ds|

This leaves the Medge matrix. This matrix is used to compute the addition of the Robin
b∫oundary to ∫the k matrix. This contribution comes from the term in the bilinear form
wHT ds = φhT ds.

We again compute this in the reference triangle after making the approximation that

T̃ =
∑N

aiφi
i=1

Thus, we have ∫
wjhT ds =

∫
φjh

∑
aiφi ds

Ki,j =

∫
φjhφi dsx,y

=

∫
hφjφi|dsx,y|dsξ

We now compute all of the possible φiφj combination. We begin with edge 1.∫ 1

φ1φ1 dξ1 =

∫ 1

(1− ξ1)(1− ξ1)dξ1
0 0

=

∫ 1

(1− 2ξ + ξ2
i 1)dξ1

0

= (ξ1 − ξ2 ξ3

1 + 1 1

3
|0

= 1− 1− 1/3

= 1/3

∫ 1 1

φ1φ2 dξ1 =

∫
(1 ξ

0 0

− 1)(ξ1)dξ1

=

∫ 1

(ξ1
0

− ξ2
1)dξ1

ξ2

= (1

2
− ξ3

1 1

3
|0

1
=

2
− 1

3
= 1/6

13

∫ 1

φ2φ2 dξ1 =

∫ 1

(ξ1)(ξ1)dξ1
0 0

=

∫ 1

ξ2
1 dξ1

0

ξ3

= (1 1

3
|0

= 1/3

Over edges two and three of the element, we use the results computed over edge 1.∫ 1

φ1φ1 dξ2 = 1/3∫0
1

φ1φ3 dξ2 = 1/6∫0
1

φ3φ3 dξ2 = 1/3∫0
1

φ2φ3 dξ1 = 1/6∫0
1

φ2φ2 dξ1 = 1/3∫0
1

φ3φ3 dξ2 = 1/3
0

Thus, for all edges,

Medge =

φiφi φiφj 1/3 1/6

=
φjφi φjφj

1/6 1/3

We have now computed all of

the required

inputs

to the FEM

code and we are ready

to run the simulation. We set Tthot = 1400K and Ttcool = 800K along the entire length of
boundary four. To determine q̇(x) we note that ~q ·~n = h(T−Tt). Thus, we can compute q̇(x)
with q̇(x) = h(Tmetal − T = 2

tcool) where h 1500 W/m K and Ttcool = 800K. The temperature
distribution of the coolside metal and the heat flux through the coolside metal are plotted
below for all four meshes.

14

We see from the plots that both Tmetal and q̇(x) exponentially increase as x increases.
This makes sense because as x increases, the blade gets thinner, resulting in the metal having
less space in which to diffuse the heat. This results in the tip getting hotter than the base,
which increases the metal temperature and thus the heat flow into the cooling gas.

We see from the results that the mesh resolution smooths out the curve as the number
of elements increases. However, the trend is the same and the error is obviously negligible
from the results. Thus, the answer barely changes with increasing mesh resolution.

15

The temperature distribution from Mesh 0 is plotted below. It is interesting to note
that the low resolution causes the large spread in temperature values. However, as noted
previously, along the boundary this low resolution barely changes the resulting temperature
along boundary four.

3 Thermal Fluid Coupling

3.1 Problem 8

The first task of the coupling is to solve the system with the q̇ from part 2. We recall from
part 1 of this project the implementation of the finite volume scheme using upwinding flux.
From the FEM script we obtain the temperatures at the nodes of the mesh that are on the
coolside boundary. These N+1 nodal values can be used along with the Tcoolside distribution
that was assumed in the FEM calculation to obtain q̇(x) at the nodes. We next recall from
part 1 that

1

Ti − T −1 =

∫ x
i+

i
2

x
i− 1

q̇(x)dx

2

Since we have q̇(x), we numerically integrate using a spacial integration scheme. For
this particular situation we choose a trapezoidal integration scheme. This choice was made
for two reasons. First, we know from prior work that the trapezoidal integration scheme is
accurate to O(∆x2). Second, we know that the values of the mesh elements are piecewise

16

linear, as this is the key approximation made by the finite element method. The trapezoidal
integration similarly linearly interpolates the solution by integrating the trapezoidal area
under the curve. Thus, we use the following process.

dxi = xi+ 1
2
− xi− 1

2

Also, note that q = 2q since there are two sides of the blade contributing to the heating of
the cooling air. The trapezoidal integration is given by:

∆x(qi+ 1

Qi = 2
qi− 1

2
)

2

We now solve the N ×N system
AT = F

1 0 · · ·

1 1 0

A =

− · · ·

0 −1 1 0 · · ·

.

T

1

T =
T2

 . ..

TN

1
F =

cpṁ

Q1Q2

 . ..

QN

Here Ti are the values of the temperature in the N control volumes. The values of Qi

are computed using trapezoidal integration as noted above. We now solve the system

T = A \ F

This returns N temperatures corresponding to the N control volumes.
Back in the main script, we now determine the new q̇(x) distribution. Here we must make

the upwinding flux approximation. This states that Fi+ 1
2
Fi. Thus, Ti+ 1

2
Ti. This means that

17

when computing the q̇(x), we take the vector of N + 1 nodes from the FEM function and
subtract

Tcool =

T0T1T2 .

.

.

TN

Where T0 = 800K and T

1...TN are the values of the N control volumes from the finite volume

method.
The temperature of the coolside for all four meshes are plotted below.

The values of T at the nodes can be seen on the left hand side of each step in the stair
function. Due to plotting issues, to see the temperature of the control volumes, we must
shift each stair one control volume to the left. The nodal values are correct, however. We
see that the temperature distribution appears to be linear.

As a side note, for the next part Mesh 3, the highest resolution mesh, was used to compute
the distribution. This was done to minimize error. As notes in task 7, the choice of mesh
does not actually matter much since the error is for all practical purposes negligible. Thus,
the choice of mesh only really affect computation time. Since there was plenty of time for
this project, Mesh 3 was used.

18

3.2

We now compute the new q̇(x) by putting our N temperatures back into the FEM code.
The results are plotted below. The solid lines are the initial q̇(x) computed by assuming
that T0 was constant along the entire coolside boundary. The dashed lines were computed
by putting the N values of T back into the FEM code, finding the new metal temperature,
and then recomputing q̇(x) = h(Tmetal − Ttcool). It can be clearly seen that there is a large
difference in the results from the two runs. This indicates that assuming T0 is constant is
not a good approximation.

19

We next compute the absolute error of the difference between q̇1(x) and q̇0(x). A plot of
this error is below.

The plot shows that the maximum error is almost 16000 W/m2 between the two trials.
However, it is interesting to note that the error barely changes with increases in the mesh
resolution. This agrees with the trends previously notices in tasks 7 and 8 where the different
meshes hardly changed the temperature distributions.

The large difference between the q̇(x) computed using T0 = constant and Tcoolside as
output by the FVM code are striking. The large error shows that assuming a constant
T0 is very unrealistic. Encouragingly, the results from the FVM generated temperature
distribution appear to be much more accurate, and thus our choice of linking these two
models appears to be justified.

3.3

We now force the code to converge the q̇ distributions. We first compute q̇(x) given a constant
temperature of the collside gas. We then sue these in the finite volume code to get the new
coolside temperature distribution. This new distribution is fed back into the FEM code, and
q̇(x) is recomputed. This process is repeated until the error is 1× 10−3W/m2. The error is
defined by

error = max(|qi − qi 1|)−

Note that both q are vectors of dimension N + 1.
The metal and gas temperature distributions for the converged models are plotted below.

We see again that Tmetal increases exponentially, while Tgas appears to increase relatively
linearly over the mesh.

20

The blade temperature distribution plots are shown below.

21

22

The temperature distributions show the same general trends no matter the resolution of
the mesh. Increases in resolution result in the temperature fronts being more clearly defined,
but the distribution is the same.

The maximum blade temperatures for all four meshes are plotted below.

This plot shows that as the resolution increases, the maximum temperature falls. How-
ever, by looking more carefully at the maximum temperature plot, we see that the temper-
ature only drops by 2.5K from the coarsest to the finest mesh. This is 0.2% of the 1180K

23

value of Tmax in the most resolved mesh.
The accuracy plot, below, corroborates these results.

The error is approximately of O(N1
e). These errors were computed by comparing the

results of the three coarser meshes to the finest mesh, Mesh 3. The absolute error is Tmax−
Tmax,3 and the relative error is defined by

Tmax 3
error el =

− Tmax,
r 100

Tmax,3
×

We therefore see that the maximum error is on the order of 10−3% or approximately 8 ×
10−4%. This is an absolutely negligible error. Thus, the choice of mesh does not matter if all
that is desired is the maximum temperature in the blade. This is an important point. The
results show that the choice of mesh does not significantly impact the maximum interior blade
temperature. This is the power of the FEM method. Even for low resolution meshes, the
scheme is accurate enough to correctly predict the behavior of the system, for this scenario.

3.4

We now examine the effect of changing the mass flow rate of the cooling air over boundary
4 on the maximum blade temperature. The results are plotted below.

24

The results show that as ṁ increases, the maximum temperature in the blade decreases
exponentially. The order of accuracy appears to be of order O(ṁ1). This is tricky to see since
for an increase in ṁ of 0.04 kg/m the temperature only decreases by about 120K, or about
10%. We can compute the accuracy by hand by comparing the maximum and minimum
mass flow rates to the maximum blade temperature for each flow rate.

25

1300

1180
→ 0.01

0.05
1.10→ 0.2

Thus, taking the log base 10 of each value, 10−1 is compared to 100.7, which is approximately
a 10−1 decrease in the temperature for approximately 101 increase in the mass flow rate of
the cool air. For a 5-fold increase in mass flow, we get a 10% reduction in Tmax. This means
that the order of accuracy of Tmax with respect to ṁ is approximately O(ṁ1). Thus, the
maximum temperature decreases with increasing ṁ by about O(ṁ1). This is expected since
increased cooling air allows for more heat to be transferred into the cooling flow from the
blade, thereby reducing the maximum blade temperature.

26

MIT OpenCourseWare
http://ocw.mit.edu

16.90 Computational Methods in Aerospace Engineering
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

