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For this project we are asked to investigate the effect of three different pitch types on the
distribution of hits in a baseball game. In order to conduct this investigation, we are going
to use a Monte Carlo simulation. A code that computes the flight of the ball given the bat
and pitch parameters was provided. The inputs for the simulation are as listed in table 1.

Variables xmin xmpp xmax

vwind (mph) -25 0 25

vbat (mph) 0 78 100

High Fastballs

vball (mph) 86 90 100

θ (deg) 20 35 89

ω (rpm) 0 2000 4000

Sinking Fastballs

vball (mph) 86 90 100

θ (deg) -15 0 15

ω (rpm) 0 2000 4000

Curveballs

vball (mph) 67 77 92

θ (deg) -15 10 50

ω (rpm) -4000 -2000 0

Table 1: Possible inputs for baseball code
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Each variable is treated as a random variable with a triangular distribution. We sample
the triangular distribution using an inversion method as follows.

1. Choose u from U [0, 1]

xmpp min
2. Compare to F (x ) =

− x
mpp

xmax min

if u < F (xmpp) then xmin < x < xmpp

xu = xmin + u(xmax − xmin)(xmpp − xmin)
else xmpp < x < xmax

xu = xmax

√
− (1− u)(xmax − xmin)(xmax − xmpp)

We use this process of

√
inversion sampling to pick the inputs for the baseball dynamics

code.
Thus, our method for the Monte Carlo simulation is as follows:

1. Use inversion sampling to obtain the input vector

2. Compute x, y, t using the baseball dynamics function

3. Classify the hit based on the following algorithm
if max(y) ≤ 4

hit is a ground ball
elseif max(y) < 10

hit is a line drive
elseif max(y) > 400

if min(y(399 < x ≤ 400)) > 8
hit is a home run

else
hit is a fly ball

else
hit is a fly ball

Note, we check for xmax > 400 and not xmax ≥ 400 since if xmax = 400, y would not
be greater than 8, and the hit would be a fly ball. We repeat steps 1 through 3 for N
iterations, each time keeping track of the inputs and the type of hit. It is desired that all
of the probabilities have a tolerance of ±0.01 with a confidence of 99%. To achieve this
confidence, we must ensure that the following is true:

P{−3σp̂ ≤ p̂− PA ≤ 3σp̂} ≈ 0.99

where σp̂ is defined by noting that P{A} can be described with a Bernoulli Random Variable
and p̂ has a normal distribution. This means that

σ2 p̂(1
p̂ =

− p̂)
N
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At worst, p(1 − p) is 0.25 for p = 0.5. Thus, if we choose N such that the desired
tolerance is met for p = 0.5, we are virtually guaranteed we will have the desired tolerance.
We compute this N as follows:

−3σp̂ ≤ p̂− P{A} ≤ 3σp̂

⇒ |p̂− p{√A}| ≤ 3σp̂ = 0.01

3
p̂(1− p̂)

= 0.01
N

9(10, 000)(0.5)(1− 0.5) = N

⇒ N = 22500

Using this N we are fairly confident that our desired tolerance will be met for all possible p̂.
Once the simulation has been run, there are several pieces of information that are desired.

First, we want to know p̂, the probability of each hit type for each pitch. We also want to
know the mean range for each pitch type, as well as the variance of the range and the
standard error of the mean estimator. For the probability of each hit type p̂, we use the
definition of the mean to derive the estimator.

p̂ =

∑N
i=1 yi 1 if hit type condition met

yi = I(A) =
N


0 if hit type condition is not met

Here N is the number of trials in the sim


ulation.

The mean range x̄ is similarly defined. Here x is the maximum distance that the ball
travels.

x̄ =

∑N
i=1 xi
N

xi is the range, i.e. the maximum value of the output vector x from the baseball dynamics
code. N is again the number of trials in the Monte Carlo simulation.

The variance is derived as follows.

s2 1
x =

∑N
(x

N − i
1

i=1

− x̄)2

This is the sample variance of the data. N is again the number of trials.
The standard error of the mean estimate is defined as follows.

σ2
x̄ = V (x̄− µx)

= V (x̄)− V (µx)

= V (

∑N
i=1 xi
N

)

=
1

2

∑N
V (xi)

N2
i=1

1
σx̄ =

N
σ2
x
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Since σ2
x is unknown, we use the unbiased estimate that was previously computed.

s2 1
x =

∑N
(x

N − i
1

i=1

− x̄)

Thus, the standard error of the mean estimate is given by

σx̄ =

√
s2
x

N

Results

Running each pitch for N = 22500 trials, we obtain the results presented in the following
tables.

Pitch Type x̄ [ft] S2
x [ft2] σx̄ [ft]

Curveball 144.9298 1.0107× 104 0.6702

Sinking Fastball 115.5313 1.4194× 104 0.7943

High Fastball 262.510 1.8669× 104 0.9109

Pitch Type P{Ground Ball} P{Line Drive} P{Flyball} P{Home Run}

Curveball 0.2472 0.2316 0.5121 0.0092

Sinking Fastball 0.6593 0.184 0.1261 0.0306

High Fastball 0 0.0024 0.8269 0.1706

The results show that if you wanted to hit a ground ball, your best chance is off a sinking
fastball which results in about a 65.93% chance of hitting a ground ball. Thus, if a ground
ball is desired, the pitches should throw a sinking fastball. Similarly, if a home run is desired,
a high fastball is best. This type of pitch results in a 17.06% change of a home run. However,
this pitch also has the highest chance at a fly ball, 82.69%. Line drives are most often hit
off curve balls, with a probability of 0.2316.

Histograms for all inputs and ranges are plotted below. The results show that the fre-
quency of each range for the three pitch types. The histograms of the inputs show exactly
what we would expect. Each input has a triangular distribution centered about the most
probably value for that input. Values of the input away form xmpp linearly decrease to the
xmin and xmax values.

The distribution of these inputs also confirms the probabilities of the different hits that
were observed during the simulation. For example, the high fastball inputs show that the
majority of the values for θ are near 40◦. This will send the ball in an upward trajectory,
greatly increasing the chances that the hit will be a home run. This can be seen in the
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histogram of the frequency of hit types for the high fastball pitch. The hits are heavily
concentrated in the home run and fly ball bias.

This same correlation between inputs and results can be seen for the sinking fastball. The
values of θ are centered on 0, resulting in the ball leaving the bat straight. This increases
the number of line drives and ground balls, as can be again seen in the histogram of hit type
frequency. The end result is that while the shape of the histograms of the inputs do not
change much between pitch types, the center of the distribution varies greatly, resulting in
the varied hits for each pitch.

Also included are the plots of the variance of the range and the probability, as well as
the confidence interval of 3σp̂ versus N . These plots show that for all pitch types the desired
confidence interval was met. The green line denotes the ”conservative” condition, i.e. when
σp̂ = 0.25 corresponding to p̂ = 0.5. The light blue line denotes a tolerance of ±0.01. Since
by the end of the x-axis at the N used for the simulation all of the tolerance curves end
inside the blue lines, we know that our desired tolerance for p̂ was met for all of the pitches.
This plot also shows that the number of pitches required to achieve the tolerance of ±0.01
is less than our conservative estimate of N , which is not surprising since there were almost
no hits with probability close to 0.5 for any of the three pitch types.

The plots of the variance of the range correspond to the value of s2
x as a function of N

as N increases. The key information from this chart is that the slope of the variance tends
1

to 0 as N increases. This tells us that our estimation of σ2 with s2
x x = (xi

N 1
− x̄)

was a good one. Interestingly, the sinking fastball had the most variability in
−

th

∑
e variance

as N increased. This can be explained by looking at the histogram of the ranges and the
probabilities of each hit type for the sinking fastball. This pitch’s results have a large number
of low range balls with a long tail. This means that the mean is susceptible to new data
for low values of N . A larger number of iterations was necessary to achieve stability in the
data. However, the variance curve does level off, so there is little need to worry about our
estimate for the variance of the range. Similarly, the plots of the variance of p̂ for each hit
type show that they converge to 0 as N increases. This again shows that our N is large
enough to achieve the desired accuracy and confidence in our estimators.
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Curveball

6



7



8



Sinking Fastball
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High Fastball
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