
16.90 Computational Methods in Aerospace Engineering
Spring 2014

Project #1: ODEs and Finite Difference

Note: Projects are meant to be open-ended and to allow some flexibility and creativity. Therefore
it is important for you to show all relevant steps, numerical plots, and justifications for the
choices made in your work.

Problem 1

A next generation airplane design uses very light-weight structures, and relies on a computerized
feedback controller to stabilize aeroelastic oscillations of its wing. In order to pass a certification
test, the new design must demonstrate that no structural damage could occur if the aeroelastic
control computer is forced to reboot in-flight, e.g., caused by a lightning strike. This project uses
computational simulation to predict whether the current design is able to pass this certification
test.

Figure 1: The 2-degree-of-freedom aeroelastic model

We model the aeroelastic vibration of the wing in the absence of the controller with two physical
variables: the pitch, α(t), and plunge, h(t). The pitch is in radians and the plunge is in nondi-
mensional units of chord lengths. Figure 1 describes these two variables. The plunging degree
of freedom is governed by a linear stiffness and damping forces, but the pitch degree of freedom
includes both the linear components and a nonlinear coupling term between the pitch and plunge
motions. Specifically, the motion is governed the following system of ODEs
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where the parameters for our airplanes are

Mhh = 1

Mhα = 0.625

Mαα = 1.25

Mαh = 0.25

Dh = 0.1 s−1
(2)

Dα = 0.25 s−1

K 2
h = 0.2 s−

Kα = 1.25 s−2

kNL = 10

In the right hand side of Equation (1), L and M are the aerodynamic lift and moment, respectively.
We model both the aerodynamic lift and moment as linear with respect to the angle of attack:

L = 1s−2 Qα
(3)

M = −0.7s−2 Qα

Here Q is the aerodynamic pressure, which depends on the airspeed. It is nondimensionalized so
that Q = 1 at a design airspeed VNO. At the moment of the controller failure t = 0, the initial
conditions

h(0) = 0

dh
(0) = 0

dt
dα

(4)

(0) = 0
dt
0 < α(0) < 0.08 radians

Tasks

1. Consider two design airspeeds, VNO and VNE , corresponding to Q = 1 and Q = 1.5, re-
spectively. For the maximum initial pitch α = 0.08 radians, solve the equations of motion
for 60 seconds using (i) forward Euler, (i) midpoint rule, and (iii) a second-order backwards
differentiation (BDF-2) scheme.

Comment on the accuracy and efficiency of the ODE solution using each of three two schemes.
Which scheme is the best one to use for this system? Also comment on the behavior of the
oscillation at the two different airspeeds.

2. To determine the possibility of structural failure, the designer of the airplane is concerned
about the maximum plunge and pitch motions experience during 0 < t < 60 seconds, for a
range of possible initial pitch angles 0 < α < 0.08 radians. Estimate the maximum values of
|h(t)| and |α(t)| during that time period, for both Q = 1 and Q = 1.5.

How confident are you in the results you obtain? Why?
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Problem 2

In this problem, we consider the linear advection equation in 2D,

∂u

∂t
+
∂cx(x, y)u

∂x
+
∂cy(x, y)u

= 0
∂y

This equation describes how the solution u(x, y, t), describing the density of a conserved quantity,
evolve in a flow field (cx, cy). Here cx(x, y) and cy(x, y) are functions of space. We solve this
equation in the square domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. The initial condition is u(x, y, 0) = 0. The
boundary condition at the x = 0 edge and the y = 0 edge is

u(0, y, t) = u(x, 0, t) = sinπt

Tasks

1. We solve the equation using finite difference method. We discretize the domain into a 513
n

×513
uniform grid. The numerical solution Ui,j denote the solution at xi = i−1

512 , yj = j−1 and512
tn = n∆t, where i = 1, . . . , 513, j = 1, . . . , 513 and ∆t is the time step size.

The nonuniform velocity field at xi, yj is denoted as Cx i,j and Cy i,j . Their values are visu-
alized in the following figure, and are stored in the text files Cx.txt and Cy.txt, respectively.

Write a code to solve the differential equation using the Forward Time-Backward Space
(FTBS) method, with ∆t = 1./1024. Plot the solution at t = 0.25, t = 0.5 and t = 1.

The solution can be visualized by the following code:

surf(x, x, u);

shading interp;

caxis([-2,2]);

view(2);

axis equal;

axis([0,1,0,1])

MATLAB
®
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colorbar;

drawnow;

In answering the questions above, please include informative plots of all your numerical results,
accompanied by clear written arguments and explanations. If you’re making an assertion about
how well a method performs or why the system behaves in a certain way, please support this
assertion with numerical results and plots.
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