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PROFESSOR: OK. So we've been talking about predicting structure proteins. At the end of the last

lecture we started to talk a little bit about predicting interactions, and that's going to

be the focus of today's lecture. And we identified a couple of different possible

prediction challenges.

One was quantitative predictions of what happens when you make specific

mutations in a known protein complex. We talked about trying to predict the

structure of, say, just a pair of proteins, and then trying to do that on the global

scale for all known proteins.

And so last time, if you recall, we thought that initially maybe this would be a simple

problem. We have proteins of known structure with a complex. Structure of the

complex is also known. And we want to make predictions as to the change in affinity

when there's a specific mutation made.

In principle, this should be easy because we have all those different formulations for

the potential energy function. And so if we figure out what the local structural

changes are that are due to the insertion or deletion of some side chain, then we

should be able to predict the change in the potential energy, and therefore the

change in the energy of the complex. But in fact, it turned out that it was very, very

hard to do that.

And so this plot compared-- the black circles were the prediction algorithms for this

problem, compared to just simply a substitution matrix, the BLOSUM substitution

matrix defined in terms of the area under the curve for beneficial mutations and

deleterious mutations. And you can see that very, very few of the black dots get far

away from what is the really simple default model. A lot of them do worse.
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So OK, well maybe that's not such a simple problem because it requires a highly

quantitative prediction. Maybe we'll do better just trying to predict which proteins

interact at all. And so that's going to be the focus of today's lecture.

Now, that also had a problem, right? Because even if I know the structure of two

proteins, I don't know necessarily what surfaces of those proteins interact. And so I

have to figure out this docking problem of which part of protein A interacts with

which part of protein B.

That's the beginning of my problem, and then I have to make a series of

subsequent decisions. So I'm going to have to figure out for any potential partner of

my protein, I need to figure out the docking problem, the relative position

orientation. Now, in this little cartoon, it's shown as a completely static protein that

approaches another static protein. The only thing that's changing is the relative

coordinates.

But of course, there will be local changes in confirmation, perhaps even global ones.

And so we need to be able to make some estimates as to what those structural

rearrangements will be when the two proteins interact. And then after we've come

up with our best estimate of the structural rearrangements, only then can we come

up with an estimate of the energy interaction and decide whether it's better than

some threshold.

OK. So one of the problems that's pretty obvious from this is that this kind of

approach in principle, if we do it rigorously through all the steps, would be extremely

slow. Now, another part that's perhaps a little bit less obvious is that it's going to be

very prone to false positives. And why do you think that might be? What am I not

taking into account here?

AUDIENCE: Are you not taking into account the desolvation [INAUDIBLE].

PROFESSOR: So one answer is I'm not taking account of the desolvation, but in fact, I can do that.

Right? So some of the potential energy functions we looked at, the statistician's

version rather than the physicist's makes it pretty easy to incorporate the
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desolvation. Any other thoughts as to what I'm not taking into account? What other

protein should I be considering when I'm considering an interaction problem?

So I've isolated, in this case, two proteins. I'm saying, in a universe where these are

the only two proteins that exist, will they have a favorable energy interaction? What I

really need to know is whether that energy interaction is more favorable than all the

competing interactions that they could have.

So even if I find something that's potentially a good interaction, it may not be the

best possible interaction. And if I consider then the concentration of this protein and

the concentration of all the other molecules out there that have a higher affinity,

then it could turn out that this is actually a rather poor substrate for my protein, a

rather poor interaction partner. So we have that false positive problem. OK.

But let's focus on the computational efficiency problem, because that's at least one

that we can come up with some nice algorithms to try to solve. So what we want to

do is try to limit our search space. If I want to figure out-- I have a query protein and

I want to ask, what does it interact with, instead of trying to do the pairwise

comparison of this protein with every other protein in the database, and doing very

precise structural calculations on all of those, maybe there's some way that I can

prefilter the set of proteins that it might interact with.

And that's what we're going to look at. So we're going to try to officially choose

potential partners before we're doing any structural comparison. And then once we

have those partners, we're going to try to avoid having to do detailed calculations

until we have a relatively high degree of confidence that these proteins could

interact by other criteria.

And we're going to look at two papers that describe algorithms for solving this

problem, and they're both uploaded to the website. The first thing that we'll look at is

called PRISM that actually uses structural calculations. And then we'll look at

PrePPI, which deals with everything purely at-- without actually explicitly calculating

the structures.
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OK. So what does PRISM do? Well, it's based on the notion that there are a limited

number of architectures that we could look at for which proteins can interact. And so

if we can identify those architectures, then we can try to figure out whether a protein

is a potential partner of another one before we do the detailed, costly calculations.

In addition, in those architectures, not all amino acids are going to be equal, but

there are going to be some that contribute more to the energy than others. And so

by identifying those critical residues, we can once again focus our computational

energy on those complexes that are most likely to be important.

OK. So it has these two components-- a rigid-body structural comparison. So that's

that two proteins are not changing their own coordinates, they're just being brought

together in different conformations. And then once the proteins have passed a

series of checks, then we allow for flexible refinement using the kinds of energies

we looked at in the previous lectures to decide how high affinity this complex could

be.

And the critical thing is that we're going to make some of these early decisions after

the rigid-body comparison using structural similarity, evolutionary conservation, and

particularly looking at these regions that are called hotspots. These are sites where

most of the free energy of interaction occurs during an interface. So it's not, as I

said, uniformly distributed.

So I showed you this slide last time. It shows chymotrypsin in a light gray and its

interaction with some protein partners. These two share some global similarity to

each other, whereas this partner is quite different from either of these two globally.

But you can see that at the interface, it's actually quite similar. And so this gives you

hope that even if you can't find a direct homologue-- so if you were trying to figure

out, what does this protein in yellow interact with, and you searched the database

and you couldn't find anything that was its structural homologue, but if you could

figure out to look for homologues of the lower regions that interact, you might be

able to figure out that it interacts with the same protein as this one and this one. OK.

So what about this idea of hotspots? And this was an idea that was first developed

4



in 1995 by this paper, Clackson and Wells, where they were looking at the

interaction of a cell surface receptor with its ligand approaching. And they did

systematic mutagenesis across the surface of the interface to see when I mutate

any single amino acid to alanine, how much it affects the energy of interaction.

What they found was things were highly non-uniform. So this lower curve shows the

change in free energy when you mutate particular individual amino acids to alanine.

And you can see there are big losses of free energy at some places, and other

places there's almost no change in the free energy binding. In a few places you

actually get a benefit from mutating a side chain to alanine.

So in this particular case, and it's held up over many, many cases then, the free

energy of binding is not uniform across the surface, but it's distributed in what has

been called hotspots. So here is a structure of the human growth hormone and its

receptor. And in red are the few amino acids that contribute very, very large

amounts-- more than one and a half kcals per mole-- to the energy of interaction.

And it doesn't correspond with any simple structural parameter. So it's not the

amino acids that have the biggest surface area, for example, or anything like that.

So it's not trivial to figure out what these regions are, although there are some

prediction algorithms.

So there are studies, and subsequent ones have indicated that roughly 10% of the

amino acids at the interface are the ones that have the biggest contribution. There

are some trends, but none of these are hard rules. These tend to be rich in these

three amino acids-- tryptophan, arginine, and tyrosine.

If you might imagine, these are regions of the protein that are highly complimentary.

So there'll be a patch on one side that's a hotspot matching up with another patch

on the other protein that's also a hotspot. And it's kind of an interesting note that

around these regions where the hotspots occur, there are other amino acids that

exclude solvent from the interface. And they call that an o-ring. So these are some

of the features that tend to occur with protein interfaces.
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So in this PRISM algorithm, what they do is the following. They start off with a

template-- two proteins that are known to interact-- and they define the interface

simply by close approach of amino acids in one chain to amino acids in the other.

So in this case, shown in these balls are regions of the proteins that interact.

And then they isolate the interfacial residues. Ignore the rest of the protein, because

we said that the parts that interact in different proteins could be homologous even if

the global structures of the proteins are not, right? So we're going to do our

structural similarity calculations purely on the interface residues and not on the

entire structure.

So then with that template, you can then look at lots of proteins and see whether

they have any structural match to pieces that interact. So here they've identified this

protein, ASPP2, which has structural homology to I kappa b at the interface.

Although globally it's quite different.

And now, once they have this potential partner for NF kappa b, this ASPP2, they're

going to test whether there's a good structural match, whether specifically in the

regions that are hotspots-- they have an algorithm for predicting hotspots-- whether

the match is good, whether it's sequence conservation at those hotspots. And only

then do they do the refinement to do the flexible refinement of the type that we

looked at in the previous lecture, energy minimization, and other approaches to

figure out what the best possible structure of this complex would be, and then what

it's free energy would be.

So here's their description of the problem. They have template proteins and targets.

They do a structure alignment. They asked whether it passes some thresholds.

These are very, very fast calculations to do. And only if they pass these fast

calculations do you do more detailed calculations. And finally, only if it passes this

do you do the very computationally expensive refinement.

And then one critical thing to remember from this algorithm is that it doesn't require

the template and its query to be perfectly matched in structure. In fact, the elements

of the structure at the interface could come from different parts of the chain. So they
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don't take into account the chain order.

So if I had a beta sheet structure in one protein that looks like this, in my query

these two proteins could be very indirectly connected. I don't care that there's a

huge gap in the insertion. I just care that locally at the interface, one protein looks a

lot like the other. There was a question in the back.

AUDIENCE: How do you search a database for 3d structures? Are you just looking at all the

[INAUDIBLE]?

PROFESSOR: That's right. So the question was, how do you search a database for 3D structure?

You do structural similarity comparisons that are based on the 3D coordinates. The

simplest way to do it, but not the most efficient, is to find the rigid-body

superpositions that minimize the root mean squared deviation, which was a metric

we gave in one of the previous lectures.

There are faster things you can do as well. You could imagine that you could look at

certain global features of elements of secondary structure and so on. And there's

been a lot of work making those algorithms very fast. Other questions? Good

question.

So they give an example in their papers that starting off with this known structural

complex, cyclin-dependent kinase, the cyclin, and p27, the inhibitor. And then

looking for structural matches. So we can identify this potential structure match. You

refined it, get an energy of interaction. Try another one that has no global structural

similarity. Again, once it passes all the checks, you compute the refinement and the

energy. And similarly with this side.

And so from this initial complex, where we had these two proteins which were

known to interact in the PDP they can make predictions that these other proteins

are likely to interact even though, again, at the global level, there's very little

sequence similarity. Is that clear?

OK. So the advantage of this is that it eventually does do these structural

refinements that allow us to figure out the best match between two potential

7



interacting proteins. But that's also its weakness because that takes a lot of

computational time.

So this other approach called PrePPI never actually does those structural

refinements of the type we talked about in the previous lecture. So if so, how does it

figure out whether the two proteins are likely to interact? So this is their schematic,

and we'll go through the steps.

So you start off with two query proteins that you want to know if they interact. And

you do sequence similarity to a database of known structures. So you find sequence

homologues to those proteins. And so they call those homology models. MA and

MB.

And now they look through the database for all the structural homologues, not

sequence homologues, but structural homologues of MA and MB. So they get a

series of neighbors that they call NA 1 through n and NB 1 to n. So these are the

neighbors of these homologues.

And they asked whether any of these neighbors, anything in this row, anything in

this row, are known to interact. And that potential interaction then could be a model

for the interaction of the query, right? So far so good.

Then they do a sequence alignment. They sequence alignment of MA and MB,

which are the known structural homologues of the queries, and the two proteins that

are known to interact. And so now they've got this potential model for the interaction

of the queries made up of two proteins of known structure that have homologues

that are known to interact. OK? So it's two steps removed from the actual

interaction.

Now, while their figure says that they do a structural superposition, that's not, in fact,

what they do. If you look at it carefully, it's a sequence analysis. And I'll take you

through the steps in a second. So they mean structured in a rather loose way. So

they're only doing sequence comparisons here. They're never actually building a

homology model for the queries. OK
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So this figure comes from the supplement where, for some mysterious reason,

they've changed all the nomenclature. So things that previously were called NA and

NB have now been called TA and TB. Take what you get. So this is a pair of

interacting proteins where the structure of the interaction is known. And they're

structural neighbors of NA and NB, which you don't know whether they interact or

not.

They identify interacting residues in this structure. That's why it's represented by

these black lines connecting blue dots. So these are interacting residues from the

two template proteins and neighbors NA and NB. And they asked whether the

amino acids in MA and MB also are good matches for this interface. And they have

a number of criteria for doing that.

So they come up with five measures. The first of those measures is a structural

similarity between these MA proteins and the MA and MB and NA and NB. Then

similarity-- OK, similarity is the structural similarity. Then they asked, how many of

the amino acids at this interface, and what fraction of the amino acids at the

interface can be aligned? So this is a sequence-based alignment of MA and-- well,

it's here called TA, but was previously called MA. Just to make life complicated. So

this is the sequence-based alignment.

These are they interacting residues, all the blue ones in the structure of TA and TB

interacting. And they asked, what fraction and what number of these amino acids

are aligned in this sequence alignment? So here they come up with a number. In

this case, I guess, it's four amino acids in this-- four pairs, I should say, of the amino

acids-- one, two, three, and four, indicated by these four lines-- are both interacting

in the structure of the complex and can be aligned to sequences in MA and MB.

And then they use these other algorithms that are based primarily on machine

learning looking at protein interfaces to decide whether the sequence of the amino

acids that are going to sit at those places in the interface are likely to be residues

that typically occur at interfaces. So this is the kind of statistics that I showed you

before from those old papers that said 10% of the amino acids are in these
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hotspots. Certain kinds of amino acids are predominant there. So the number of

algorithms, and they list a bunch, that they use to come up with a score to decide

whether these residues, in fact, are statistically likely to be good matches. So they

have these criteria and they decide then that some fraction of the amino acids at

this interface in MA and MB are likely to be reasonable ones to be at the interface.

So with all that done, they then use all of these different scores with a Bayesian

classifier, and we'll talk a little bit later in this lecture and probably the next lecture as

well as to what a Bayesian classifier is. But they plug all those scores in that they've

derived from these proteins to decide whether these two proteins are likely to

interact.

So the advantage of this approach is it's extremely fast. Everything we've talked

about are very, very quick calculations. Even the structural alignments are fast. The

sequence alignments, of course, are. So we get through the whole database very

quickly. So they've actually computed the potential attraction partners of every pair

of proteins in various genomes based solely on these alignments.

The disadvantage-- so what's the disadvantage of this method?

AUDIENCE: Can't get a de novo interaction?

PROFESSOR: We can't get any de novo interaction, so if there's no neighboring structures that

interact, they'll never come up with it. So that's an important point. And then the

other problem is, because it doesn't have the structural refinement, it's given up on

that slow calculation, so also loses a lot of potential specificity. All the conformational

changes that can occur will be lost to an algorithm like this.

So we have these two competing approaches. Yes, questions in the back.

AUDIENCE: Couldn't this method actually be used as an input to, say, a refinement step, for

example?

PROFESSOR: The question was, could you use this kind of approach as an input to the refinement

step? And absolutely one could. Is there another question back there? Other
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questions?

All right. So we're going to take a slight turn here in the course lecture and move

away from a purely computational approach and actually look at how interaction

measurements are made. One of the big changes of the last decade or so is that

we've gone from an era when interactions were measured pairwise to interactions

being measured in bulk. So through high throughput measurements. And we'll see

that that leads us to some statistical problems which eventually bring us back to

some computational issues as well.

So if you want to measure all the proteins that interact in an organism, turns out to

be, obviously, very difficult. One big advance that's helped with this is the idea of

tagging proteins and using mass spectrometry to figure out what they interact with.

So in these two sets of papers, which were some of the early ones being done in

yeast, they took one protein at a time and attached a tag to it. And I'll talk about

exactly what those tags are, but those are labels that allow you to attach it to a solid

support.

And then by attaching to a solid support, you could then purify any proteins that

stuck to protein one here. And then after you purify them, you can run them out on

a gel, cut them out, and figure out what the identity of those interacting proteins

were by mass spec. So this sounds very labor intensive, but it's still a lot faster than

anything that came before it. And with this approach, they were able to go through

entire genomes, proteomes I should say, and figure out all the interacting partners

for very, very large fractions of all the proteins there.

So with this approach, what kinds of proteins do you think are likely to be false

positives? Any thoughts? Yes.

AUDIENCE: Proteins stuck on the column that has nothing to do with interaction [INAUDIBLE].

PROFESSOR: Exactly. So one thing that can be quite problematic are proteins that stick to the

column regardless of which protein you put there. And we'll see an approach to

getting rid of that. Other kinds of problems? A variant of that. Thoughts?
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What about proteins that tend to stick to other proteins non-specifically, right?

Those are going to be quite problematic too. And what are the likely false negatives

in an approach like this? The proteins that really do interact with the blue one but

aren't picked up. Yes.

AUDIENCE: Weak interaction partners [INAUDIBLE]

PROFESSOR: Weak interaction partners, things, particularly with short half lives. Because you do a

lot of washing, so it's going to be dependent on half-life. Very good. What else?

Yeah.

AUDIENCE: Maybe something that interacts in tag region?

PROFESSOR: Something interacts in the tag region, right. So something interacts right around

here would be lost because this would sterically interfere. Very good. Anything else?

What about the concentration of proteins. How does that influence whether they

show up here?

All right. So if I have a very high concentration protein, it may interact even though

naturally it doesn't. They never see each other. They're in different compartments.

But when [INAUDIBLE] and do this. But low abundance proteins are going to be

quite problematic because there'll be very little of them in these complexes

compared to the high abundance proteins. It won't be detected by this method.

They will never get to the mass spec, and so on. So we've got both false positives

and false negatives in these approaches.

Now, one of the things that came up was proteins that stick non-specifically to the

column. And there was a clever approach in one of these early papers that got

picked up to avoid that. And this is called tandem affinity purification, or TAP-tags.

And the idea is the following.

We have some gene. And we use homologous recombination-- this was done in

yeast where this is easy-- to insert this sequence, which codes for the following. A

piece of protein of no particular function, as far as anyone knows, a spacer, followed

by this calmodulin-binding protein, followed by a protease recognition site, and then
12



by protein A.

So once this protein gets expressed-- and it gets expressed in it's native levels

because you're inserting this into the genome. So it's not on an exogenous

promoter. It's in its normal position. Whatever that protein was, then has it as C

terminus all these pieces. So how does that help?

In the purification, we start with something, IgG IGG, that binds to protein A. So now

that's what attaches us to the solid support. And attached to the solid support will be

all those things that are nonspecific binders.

And so if I have some nonspecific binder that just likes my solid support, it'll be here.

Nonspecific. And if I just acid washed everything off the column and ran my gels

with that, or boiled it off in SDS, I would get the nonspecific protein too. But what

they do instead is they instead cleave here with a very specific protease that

recognizes this site. It's called a tobacco etch virus protease. It has a very long

recognition sequence. You can make sure it doesn't cut anywhere in any other

protein.

And so now, instead of alluding non-specifically with acid or detergent, you allude

specifically with TEV, and then this part of the protein will fall off. And then you do a

second purification that relies on this piece of the protein. So you pull out only the

things that you want that have the CBP, the calmodulin binding protein, by having

different kind of solid support that has calmodulin attached to it.

And so through this process, you can get rid of a lot of nonspecific binders. It

doesn't help you with the false negatives, right? You've made the wash conditions

even harsher so you're going to lose more proteins. But you'll pick up fewer false

positives.

And then finally, the last purification procedure actually uses EGTA, which is a

chelating agent. So this interaction between CBP and calmodulin depends on

calcium. EGTA sucks the calcium out of that interaction. And so it's, again, a very

specific way of alluding rather nonspecific one, like heat, salt, acid, or detergent.
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So this has been one technology, affinity purification followed by mass spec, that's

given us a lot of information on protein-protein interactions. And a computing

technology that's also contributed quite a lot is called yeast two-hybrid.

So in this approach, you have a reporter gene that normally is not going to be

transcribed. It has at a design DNA binding site, a DNA binding protein, and your

bait protein. And you want to figure out every protein that can interact with this prey.

So the prey now is attached to an activation domain.

If these two proteins don't interact, the activation domain never gets recruited to this

reporter, there's no transcription. But if the green protein and the blue protein

interact, then the activation domain is going to be recruited to this promoter and it's

going to turn on transcription, and then you'll get a signal.

So what are some of the advantages of this approach? It doesn't require you to

purify anything. So it should be much more sensitive to low abundance proteins. So

that's definitely an advantage.

It'll pick up a lot of those transient interactions. You may not get continuous

activation, but you'll get transient activation. And if you've set the conditions up

properly, you can pick up the transient activation.

But it has its own biases, so none of these techniques are going to be perfect. It's

going to be biased against proteins that don't express well. This is, as the name

implies, typically done in yeast. So if you have human proteins and you express

them in yeast, or plant proteins that you express in yeast, there could be some

proteins that just will not express well in that organism.

What else can be a problem? Some proteins don't do well in the nucleus, right? So

if you're interested in interactions with membrane proteins, it's going to be very hard

to get them to express in the nucleus, and therefore, you'll never pick up those

interactions.

OK. So we've got these two different technologies-- the affinity capture mass spec

14



and the two-hybrid. Questions on those technologies? Yes.

AUDIENCE: Could another control be for the mass spec purification just to subtract out

everything that alludes non-specifically.

PROFESSOR: The question was, could you subtract out anything that's nonspecific. And yes, if

you've got what you might call frequent flyers, proteins that show up in every single

purification, then you can simply ignore those. And that is often done. So that'll help

you with things that are very nonspecific for the surface.

What's more of a problem are proteins that have some affinity for your protein x but

are not really highly specific for it. So they tend to bind in certain kinds of patches.

Those would be harder to figure out because they won't stick to everything. Good

question. Other questions?

All right. So we've got these different technologies. What we'd really like to be able

do is we know that there are problems in each approach. We'd like to be able to

compute the probability that two proteins interact based on the data. So now we're

turning back to the more mathematical computational approaches.

So if we just consider one experiment-- and we're going to talk about gold standard.

So what's a gold standard? It's a set of proteins that we have extremely high

confidence interact because it was analyzed by some other technology. Not two-

hybrid, non-affinity capture mass spec, but much, much more direct interactions. By

physical measurements, maybe the structural work. So the number of criteria that

go into it.

So we have this gold standard data set where we know the proteins definitely

interact, and we have our experiment. So clearly anything in the overlap, we can

count as true positives, right? We detected it. It's in the database of gold standards.

And things that are in the gold standard that we missed are obviously false

negatives. We report them as non-interacting, but in fact they do.

The question is, how much of this is true positive? Everything that's detected in the

experiment but we have no information for it in the database. So that could be for
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one of two reasons, right? That could be that they really don't interact. Or it could be

that no one's measured it. The whole point of this experiment is to find new things.

So is there any way to estimate what fraction of all the things that are unique to this

experiment are true positives, and what fraction are false positives? Those we'd like

to try to figure out.

Now, if we just had one experiment, that would be very challenging. But what

happens when we've got two experiments? So we have these two affinity capture

mass spec experiments, or maybe affinity capture mass spec and a two-hybrid. So

now let's think about the overlap of those two experiments with the gold standard.

So I've got this region of overlap between experiment 1 and experiment 2, and then

this region that's overlapping between all three things. Experiment 1, experiment 2,

and the gold standard. So these clearly are two positives, right? They're high

confidence because I picked them up in both experiments, and they're in the gold

standard.

What about all these things in what I've labeled here region 2? Well, if we believe

that these two experiments are independent of each other in a rigorous way-- so

let's say one's a two-hybrid and one's an affinity capture mass spec, there's no

particular reason that the false positives for one would be false positives in the

other. In that case, I can call this region 2 my consensus true positives. I have a

very high confidence that these are true interactors. Everyone buy that? Seem

reasonable?

OK. So here's where the trick comes in. What fraction of all these consensus true

positives are picked up in the gold standard? This ratio, right? Region 1 over region

2. OK.

So now I've got this region of things that are picked up-- the true positives from this

experiment, then the gold standard. And then I've got this region that's unique to

experiment 2 and it's going to be some mix of true positives and false positives. And

the authors of this paper that are cited here make the following argument.
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We're going to assume that the ratio of I to II is the same as the ratio of III to IV. So

the fraction of consensus true positives that are picked-- these are independent

experiments. So the fraction of true positives that are picked up in the gold standard

is going to be constant, whether they're in the consensus or not.

So the fraction at ratio of I to II is going to be the same as the ratio of III to IV. So by

that then, I can figure out how much of this region consists of true positives and how

much consists of false positives. Everyone buy that? Yeah.

AUDIENCE: Can I check-- are we not saying that the gold standard represents all true positives?

PROFESSOR: Correct. Well, we're saying that the gold standard consists of things that we know to

interact--

AUDIENCE: But there may be more.

PROFESSOR: But there may be more. And the goal of our experiment is to find those other ones.

All right. So if you accept that premise, which seems plausible, then you can

compute what fraction of all the things that are picked up in each of these

experiments are likely to be true positives.

So drum roll please. It turns out that the number's not that high. So the fraction of

things in the consensus was 347 out of almost 2000. And if you do the math then,

what you end up with is that the true fraction in this region, for which we have no

data, is 1,123 out of-- and the false piece in this is going to be almost 15,000.

And they went ahead and did this for a number of different experiments and

computed the fraction of derived false positives for these data-- might be a little bit

hard to see on this screen. But the numbers range from 50% false positives to, in

some cases, over 90% false positives. That's a little disturbing, right? So these

technologies are good at picking up interactions, but there's reason to be very

skeptical.

OK. So now we've got a serious problem, because how are we going to figure out

which of these interactions to trust when we know that a very, very large fraction of
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them are false positives? So what could you do? Well, you could take only the little

bit of overlap. You could say, I have that Venn diagram-- method 1, method 2. They

did agree on a bunch of things. So I could take only those.

That obviously throws away a lot. Someone else suggested we could throw away

the sticky proteins, right? So maybe there are nonspecific proteins that don't show

up in every experiment, but they show up in a very, very large fraction of all

experiments. Maybe I toss those out. That's another possibility.

But what we really want to do is actually come up with a probability estimate. To not

have to make a hard decision, but come up with an estimate of the probability that

things interact based on all the data. So how do we go about doing that?

So first of all, what happens if you just require a consensus? So this plot shows

accuracy and coverage of the gold standard for individual experiments with different

thresholds for deciding what's interacting, different cutoffs and things. So the

individual experiments are shown here.

And then if you acquire two methods to pick something up, or three methods to pick

something up, you can get better and better in your accuracy. This is a log-log plot.

So if you require three methods to agree before you call something a true positive,

you can get up to-- I'm not sure exactly what this is, but 80%, 90% possibly. Right?

But look at where you at the y-axis. You'd only get about less than 1% coverage of

the gold standard. So that's not a great approach.

So what we really want to do, as I said, is to try to estimate the probability that

proteins interact given all of our available data. And the data could be specific

experiments. Say the two different mass spec experiments we just referred to. Or as

we'll see a little bit later in this lecture and possibly the next one, other kinds of

extraneous data that are not direct physical measurements of interaction, but might

give us confidence that things interact based on similarity in annotation, or similarity

in gene expression, and so on. And we'll get into details of that.

OK. So to do this, we need to have a little bit of a refresher on Bayesian statistics.
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So I want to measure the probability that an interaction is true given the available

data. Right? And I can estimate that based on the probability of observing the data

for things that I know to be true and these prior estimates. So what's the prior

probability that an interaction is true and the prior probability of observing a

particular data set.

Now, this by itself isn't really that helpful. I haven't told you yet how to calculate any

of the terms on the right. But bear with me. If I want to decide the likelihood that a

protein interacts-- how likely is it? Is it more likely that it interacts or not? I can

compute this ratio. The probability that the interaction is true given the data over the

probability an interaction is false given the data. That's the likelihood ratio.

So by this formula, I then cancel out this probability of the data, the prior probability

of the data. And if I had a way of calculating this, and we'll get to it in a second, then

if it's more likely than not to be a true interaction, I can call it an interaction, right, if

it's less likely. So if this ratio is greater than 1, I accept it as a true interaction. If this

ratio is less than 1, then I reject it.

OK. So now our challenge is to figure out how to compute these terms. One more

thing to note is if all I want to do is be able to rank every interaction by this likelihood

ratio, rather than coming up with a hard threshold, then I actually don't need all

these terms. So this is the likelihood ratio. I can convert it to a log space. So it's

going to be the sum of these two terms.

And if I'm simply ranking everything by this log likelihood ratio, this term is the same

for every interaction. It's just composed of prior probabilities. So it's not going to

affect the ranking at all. Any questions on that? Is that clear? Good.

So if I just want to come up with a ranking function, all I need to do-- all-- I need to

do is to be able to estimate the probability of observing data for true interactions

and the probability of observing that set of data for false interactions. Everybody buy

that? Yes, please.

AUDIENCE: When you say that prior probability is the same for all interactions, we're saying
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we're assuming the same prior probability for all, or is this [INAUDIBLE]?

PROFESSOR: That's its definition. We mean, what is the prior probability that proteins interact

versus the prior probability? So it's independent of the proteins that we're looking at.

Other questions?

All right. So we need a way of computing this piece of all the things we've looked at

before. So how do we get an estimate of the probability observing a particular

configuration of the data? Meaning, I detect it in experiment 1 and not in experiment

2, but in experiment 3. What's the probability of that given it's a true interaction? So

that's what we're going to dive into right now.

OK. So one thing we could do to make life simpler, and then we'll remove this

simplification later, but let's, for the time being, assume that all of my data are

independent. So the two-hybrid is going to have completely different mistakes than

the affinity capture mass spec. So those two data sets are going to be completely

independent of each other.

So I can write this as a product of a particular observation-- a particular mass spec

experiment and a particular two-hybrid experiment for true attractions and false

interactions. So it's the product of the probability that a particular experiment would

detect an interaction if the interaction is true over the probability that that particular

experiment would detect it if there was no interaction. I'm just going to multiply all of

those probabilities. Yes.

AUDIENCE: [INAUDIBLE]. This is one interaction pair?

PROFESSOR: That's right.

AUDIENCE: And you take the product over all the interaction pairs within one run of the

experiment. Is that correct?

PROFESSOR: If I want to determine whether a particular interaction pair-- I want to compute this

log likelihood ratio, or this, actually, ranking ratio, because I've thrown away the

priors. I want to compute this ranking ratio for a particular pair. So I've got protein A
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and protein B. And I want to determine whether I believe it to be more likely to

interact or not, and rank it with all the others, right? So I'm doing this for a pair of

proteins now. So far so good?

Now, for that pair of proteins, I have a series of observations, or lack of

observations, right? I have a whole bunch of experiments. This experiment detected

it, that experiment didn't detect it, this one did. So what's the probability of these

proteins-- these A and B really interact given that yes, no, yes in my experiments?

And then for new protein, it might be no, no, yes, and what I want to figure out the

probability for this pair.

AUDIENCE: So is the scale of the big letter M, is it on the order of like 10 experiments, 100

experiments, or thousands of experiments?

PROFESSOR: Ah. So the question is, what's the scale of this. So obviously, that's going to depend

on what kind of data I bring in, but in these cases, it's small. So we have a handful

of these high throughput experiments over entire genomes and proteomes. So

there's not to be a lot. So in some of these early papers, there were four interaction

experiments that they were looking at. Now the numbers might be a little bit bigger,

but not significantly greater.

All right. So now to compute this, we need a set of gold standards. But now we don't

just need gold standard positive interactions, proteins that we know really do

interact. We also need proteins that we know really don't interact. Because I want to

compute the probability of an observation given that some interaction is definitely

wrong.

So precisely how I compute these terms is going to depend on the kinds of data.

The experiments I've just been talking about, these high throughput mass spec,

which were the ones which we looked at the ratio of the consensus, true positives,

and estimated that 96% of all the data were possibly in error. The details of how to

do those calculations are here. I leave you to look that up if you're interested.

But now what we're going to do is we're going to see how, if we were to rank
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interactions based on this term, we can avoid having to throw out most of our data.

So we said if we require all the experiments to agree, we're going to have very, very

low coverage. Now we're instead going to rank everything based on this likelihood

ratio, or something derived from the likelihood ratio.

So in this paper where they were simply looking at the protein-protein interaction

data sets to compute these interactions, they ranked everything based on that

ranking function we just described. And then as you vary your threshold, you can

figure out how many true positives you have and how many false positives you have

in the gold standard. True interactors and false interactors. And you can compute

this curve, right? For any particular value of that ranking ratio, what's my sensitivity

and what's my specificity? Are you clear what this plot means?

And here they've plotted the values for individual experiments. And this is the value

for an independent database of gold standard interactions. And so now, where do

they come up with their true positives and their false positives? A lot of this is going

to depend on how representative those are. And all these numbers are subject to

revision if you decide that the true positives and false positives that people are using

are not accurate enough.

So they used two well annotated databases of interactions. One from MIPS and one

from SGD. And you can play those off against each other as the database of true

positives. In some ways, that's the easier thing because people like to report that

proteins interact. They tend not to like to report the proteins don't interact. You don't

see a lot of nature papers saying protein x doesn't interact with protein y.

So how are you going to figure out, then, what are your true negatives? So the

strategies that they used-- well, one possibility is they're annotated to be in

complexes, and those complexes are different from each other. That's not bad,

right? But it's not a guarantee either.

Or this is a little bit better. They're annotated to be in different parts of the cell. Of

course, if those annotations aren't perfect, low concentrations, you could still be

wrong. Or that they have anti-correlated gene expression. I kind of like this one. So
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it's one thing to be not correlated, but if you're anti-correlated, seems pretty

suggestive that these two proteins are never in a complex together.

Again, it's no guarantee because, as we'll talk about in some detail later, RNA levels

are not very good predictors of protein levels. But if you apply enough of these

criteria, you can come up with a set of proteins that you have fairly high confidence

really don't interact. You combine that with the databases of proteins with very high

confidence that they do interact, and you can get the true positives and false

positives that you need for this analysis.

all right. So that's a way of combining some information. We're going to see a

generalization of that called Bayesian networks. We've mentioned this already in at

least two different contexts, and it'll come up again later in the course as well.

So these are very general methods for reasoning probabilistically. We will see them

in the context here of predicting interactions. We'll see them later in the context of

gene regulation and signaling as well.

What we fundamentally need to do a Bayesian network is a graphical structure that

represents our understanding what the relationship is between causes and effects.

And a set of probabilities that allow us to compute things on this network. We'll show

you examples where those networks are derived from our prior understanding of

the problem, but also ones where the structure of the network is learned from the

data.

And we're going to see two primary contexts. First we have this question of whether

proteins interact. That's what we've just been talking about. So here are four

experiments, the in vitro pulldown experiments and yeast two-hybrid experiments,

that give us relatively independent information about whether proteins interact. And

we're going to look at a paper that used those data with a Bayesian network to

compute the probability that two proteins really do interact based on the

combination of all the data, rather than throwing out anything that doesn't fall in the

overlap, which could be a very, very small number.
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And then later on we'll see examples of using Bayesian networks to understand

biological networks. So this might be a set of transcription factors that are regulating

a set of differentially expressed genes. And the structure of the graphical network

for a Bayesian network has a lot of similarities to the way we normally think about

transcriptional regulatory networks. So there's sort of a natural way of transferring

our regulatory problem into a graphical network problem.

But we're going to focus on these prediction problems for protein-protein

interactions first. Now, if I just want to compute the probability of detecting an

interaction in various experiments, given that it's true or false, I could explicitly

compute that probability. And we saw examples of that just now.

But some of these Bayesian network problems become much, much too large to do

that. This is a little tiny piece of a Bayesian network that is supposed to represent I

believe it's transcriptional regulatory network. You could never possibly write down

all of the terms in this probability, where every node could, in principle depend on

every other node in the network. It would just be a ridiculously large problem.

In fact, how large would it be if I've got N binary variables, my gene is on or off, my

interaction is true or false, I have 2 to the N possible states? Right? And the only

constraint I have, in principle, is that all the probabilities have to add up to one. So I

have 2 to the N minus 1. 2 to the N minus 1 possible variables that I need to set. So

that's a ridiculously large number in most contexts.

So how do Bayesian networks help us solve this problem? Well, we represent our

understanding of the problem in a graphical structure where we have causes and

effects. And there'll be a direct arrow from a cause to an effect. I don't always know

the cause. So in our context, we were trying to figure out whether two proteins

interact. What do we measure?

We actually don't measure interactions. We measure the result of a particular

experiment, which is a combination of whether interacted and all sorts of noise that

we've just discussed. So the effects that we observe are detected in experiment one

or detected in experiment two. The cause is, did it interact or not? So the cause is
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hidden, the effects are observed.

Now, in the case we were looking at before, we treated all these probabilities as

being independent. But we might know something about the structure of our

experiments, the kinds of experiments we're doing, that might lead us to have a

different structure. So we could have an interaction that gives rise to all different

kinds of data.

But depending on whether the protein's a membrane protein or highly expressed, it

might influence the results of certain experiments and not influence the results of

others, right? So like a two-hybrid would be very biased by which one of these? The

membrane, right? And then the affinity capture mass spec could be very influenced

by proteins that are expressed at very high levels or very low levels.

If we assume that all the interactions are independent, then we multiply

probabilities. And we'll go into more detail, but this is what we're looking at up until

now. In cases where we believe that all the observations are not independent, then

we're not going to simply multiply things. We'll see there's a more precise way of

computing the probabilities.

Now in this case, I've drawn the graphical structure because I believe that I know

what's going on. But in the more general case that we'll look at, we'll actually derive

the structure from the data.

One of the nice things about Bayesian networks is that it removes the need to have

all 2 to the N minus 1 possible parameters, because it tells us there are certain

independence conditions. So node is independent of its ancestors given its parents.

What does that mean?

If I'm trying to reason about the expression of one of the genes down here, and I

know that this transcription factor is on, I don't really care what the probability is that

any particular parent of that transcription factor is on, right? So I don't need to know

anything of transcription factor B1 if I know the state of B2. If this is on, then that's

the only thing that's going to affect whether it's turning on these genes, regardless
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of what the activation state of its parent was. Is that clear? Yes.

AUDIENCE: The slide's saying TF B1. [INAUDIBLE] TF B2? It says TF A1.

PROFESSOR: Yeah, sorry. That should say TF B1. Thank you. OK. So we'll do a little example. It's

admission season both for graduate school and undergraduate. So let's do a little

toy example where we're going to get rid of the admissions committees and just do

automated admissions.

So we're going to collect various data about students, and then we're going to build

a Bayesian network. And that network is going to decide whether to admit students

into this simplified version. And the only information that will go into our decision will

be the grades on the transcript and the GREs. Hopefully that's not the case.

And we believe that certain things influenced your grades and your GREs. Whether

or not the student is smart certainly should have some influence, but also the great

inflation at their school will have some influence.

So a prediction problem in a Bayesian network is going from the causes to the

effects. So if I want to predict whether a student's admitted, I only need to look

upstream. So we want to predict-- we observe the things on the top. Say, grades

and GREs, and we want to predict whether this student should be admitted or not.

There's another problem called an inference problem, which is when we observe

the effect and we want to make inferences about the causes. So an example of that

would be, you apply for an internship and they say, oh, she's a student at MIT. I bet

she's smart. Right? They're doing an inference problem.

We'll leave it for you to decide whether you and your colleagues are as smart as

everyone thinks, but hopefully you are. OK. So we've got these two different kinds of

problems. We've got prediction problems from top to bottom, and inference

problems from bottom to top.

And we're going to talk about conditional probability. So if I've got some very small

piece of this network with just two nodes, I could write out all the possible
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probabilities for any pair of those nodes. So the probability that a student is not

smart given that that student has low grades, the probability that the student is not

smart given that the student has good grades, and so on, for all possible pairwise

comparisons.

Or I could write this as a conditional probability, which tends to be an easier way to

think about the problem. What's the conditional probability of a student being smart

given that they've got good grades or given that they have bad grades? They have

the same information. For this one, I need additional information about the total

probability of students being smart or not.

And the total number of variables, as I said, in either case is the same. So these are

completely interchangeable, but it's a lot easier to reason with conditional

probabilities than with the joint probability tables. Those we'll see in a second.

So as I've said, you don't need a full probability table for a Bayesian network. You

don't need two N to the minus 1 variables. And the fundamental reason for that is

that the joint probability is only going to depend on the parents. So in this toy

example, the GRE scores over here are not dependent on grade inflation.

Now, that all hopefully makes sense. Questions? Bayesian networks get a little

murky next, so I'm going to try to give you into-- oh, yes. Question, please.

AUDIENCE: You said that the parents don't affect their children, but if grade inflation affects the

grades, how does that influence-- will that influence the grade [INAUDIBLE]?

PROFESSOR: Sorry, can you say the question again?

AUDIENCE: I guess I'm just confused by this particular example. What do you mean by the joint

probability? The joint probability of what?

PROFESSOR: So if I want to figure out the probability of some particular configuration of all the

nodes in my network, I don't necessarily need to consider all possibilities. Because

for example, if I want to consider all of the joint probability samples with settings for

the GREs, whether the student had good GRE scores or not, that's not going be
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influenced by the student's school's grade inflation policies.

AUDIENCE: But wouldn't the grades be influenced by the--

PROFESSOR: But the grades would be. That's right. So some of the variables I can remove and

others-- some of the joint probability statements I don't need to worry about and

others I do. And which ones I need to consider is determined by the graph structure.

Yes.

AUDIENCE: How is the graph structure determined?

PROFESSOR: OK. So how is the graph structure determined? So it's determined in one of two

ways. I can draw it in advance because I believe that I know something about my

setting, I believe that these data are independent. Then it has that structure like this.

Cause and a bunch of independent effects.

Or perhaps I claim to know that actually two of these things have a common parent

as well. In some cases I know. We'll also talk about how to learn the structure from

the data, which is the more common setting in regulatory networks. So in these

kinds of problems when trying to decide how to integrate different proteomic data

sets, typically people make arbitrary decisions about what the structure is based on

their knowledge of the system.

But if you're trying to figure out de novo which proteins interact with which, which

proteins regulate which genes, then you have to learn it from the data. And we'll talk

about how to do that in a second. Great questions. Any other questions? Anything in

the quiet half of the room?

OK. So as I said, this part of it, I think you can usually come up with cases that give

you fairly good intuition. One of the things that is true in these Bayesian networks

which most people find a little bit surprising at first is something called explaining

away. So let's look at this Bayesian network.

I go outside and I detect that things are slippery on the grass. So that could be for a

lot of reasons, but one possible reason is that the grass is wet. OK. What are the
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causes of the grass being wet? Well, it could have rained or the sprinklers might

have been on.

And depending on this as an example-- so a lot of the Bayesian networks were

developed in Stanford by Judea Pearl and colleagues. And of course, in California it

doesn't rain that often. So there the season is a strong determiner of these things.

Not so much around here.

So in this example that they like to do, so does the probability that it's raining

depend on whether the sprinkler is on or not? Now, the answer should be no, right?

I mean, in reality, when you think about-- there's no causal relationship between the

sprinkler being on and the rain. But in fact, when we're reasoning over these

networks, we actually are influenced.

In a probabilistic model, if I know that it's raining, and I know the grass is wet, then

what do I think about the sprinkler being on? Do I think it's just as likely? No, I think

it's less likely, right? If I go outside and see the grass is wet, there are clouds, the

rain is coming down, is the sprinkler likely to be on or not? It's likely to be off, right?

So there's no causal relationship, but there's the probabilistic relationship through

the graph structure. And that's called explaining away. And you can take a whole

course on how to understand which relationships you can detect and which not.

This is not the place to try to go into that, but I hope you'll be familiar with this

problem. And I'll try to give you a toy example that makes it a little bit more obvious

in terms of the equations where this comes from.

So imagine this very silly game where we play, we toss coins. We toss a coin twice.

And if it turns up heads both times, you get a point. If it turns up tails both times, you

get a point. But if one's a head and one's a tail, you don't get any points.

Now, does the probability that I tossed a head on the first time depend on whether I

toss a tail on the second time? So causally, obviously not, right? First of all, it

happened earlier in time. And secondly, the coin tosses are completely

independent.
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But what happens when I know the outcome? What if I know what score you got?

So if I know your score, then is the probability that I tossed the heads on the first

time independent of whether I got a tail on the second time? What do you think?

How many people think it is independent then?

How many people think it's not independent. Very good. It's not independent. And

obviously, here's the math to prove it, but your intuition does the same thing. So

what's the probability that I tossed a head on the second time given that I got a one,

I scored, and I tossed a tail on the first time? Obviously, it's zero, right?

So here's the probability of getting a head in the first time and scoring one, and tails

on the second time is exactly zero. So that's called explaining away. You can reduce

your belief in certain parents based on what you know about the children. Think of

this coin toss example or the rain in California and the sprinklers.

All right. So as this come up several times, how do we obtain the Bayesian network

structure? There are two problems that we need to be able to solve. We need to be

able to learn the structure, and we need to be able to learn these probability tables.

If we know structure, how do we get the probabilities? Well, we need to identify

some objective function we're going to try to optimize, and then choose values for

all probability distributions that optimize that objective function. And that's the kind of

thing we've been doing all along, just like in the Gibbs sampler. We need some

objective function or protein structure. We need some objective function that we're

going to try to optimize.

So there are two common ones that are used a lot. There's maximum likelihood and

the maximum posterior. So maximum likelihood is defined as the set of param--

theta is all the parameters, all the probability distributions, the probability of getting a

score of one given that you had heads and tails, whatever it may be. The probability

of getting admitted given that you had certain GREs and certain grades.

So we want to find the set of parameters, all those probability distributions, that

maximize this. The probability of the data, our training data, given those
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parameters. That's a pretty obvious one.

And the maximum posterior includes some of our beliefs about the prior probability

of the data and the prior probability of the parameters. This is a little bit less intuitive

because you have to ask, well, where do those numbers come from? And that,

again, is a whole course unto itself.

OK. Now, how do you find these parameters? Again, it's the kinds of search

problems that we've looked at before, various kinds of hill climbing. So gradient

descent, expectation maximization, Gibbs sampling, which you've looked at

explicitly. And again, the full details of how to do that are outside of our scope today.

OK. So in our example of this coin toss game, we would use one of these two

functions to try to decide what's the probability of getting heads or tails for any given

score. That's what the kinds of parameters are.

Now, the structure problem actually turns out to be really, really hard, because there

are a very exponentially large number of potential structures to draw from. And

unless you've got some prior knowledge, it can be impossible, depending on how

much data you have, to actually build this structure.

So there are many algorithms that have been proposed. And a lot of our settings,

we're going to use some kind of prior knowledge to reduce the search space. So if

we're trying to talk about transcriptional regulatory networks, it's very common to

assume that there are only some kinds of nodes that can be causes and other kinds

of nodes that can be effects, right?

So in gene expression it would be effect, and then you would limit your causes to

only be transcription factors. It would generally be signaling molecules or something

like that, and not allow all 20,000 genes to be causes and all 20,000 genes to be

effects.

So there are lot of resources to learn more about Bayesian networks. As I said, you

can have whole courses on this. I think there are a lot of good tutorials at this

website. I've also put in the notes a little toy example for you to work through all the
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probabilities, which I think, in the interest of time, we won't go through in detail.

All right. So to motivate what we're going to do in the next lecture, I just want to talk

about other kinds of data that you could bring to bear on this problem of predicting

which proteins interact. We'll see, then, how that gets fed into an interaction

Bayesian network to make the predictions.

So we've talked about affinity capture and two-hybrid, but what other kinds of data

could we use to predict the probability interaction? Well, one thing you could use

would be gene expression data. And the idea is that if two proteins interact, they

should be present in the cell at the same time, right?

So we talked about this a little bit. If they're anti-correlated, it seems very unlikely

they interact. What about if they're correlated, but not perfectly correlated? So

here's a plot that shows a histogram of proteins that are known to interact, proteins

that are known not to interact. So empty circles are known interacting proteins, the

dark circles are non-interacting proteins, and the other ones are based on the

experimental data.

And the distance here is the difference between expression profiles. And we'll talk in

coming lecture about exactly how to compute distance between expression profiles.

But the further to the right it is, the less similar the expression profiles are across

large data sets. So what you see is the interacting proteins tend to be shifted more

to the left, more similar expression profiles than the non-interacting ones.

But what do you notice about this? There's no way to draw a line and say,

everything to the right of this is in one class and everything to the left is another,

right? So by itself, it's not going to get us very far. There are plenty of non-

interacting proteins that have very highly correlated gene expression and plenty of

interacting proteins that have poorly correlated gene expression. So it's a trend, not

a rule.

Now, what about evolution? So if I look over many, many organisms, I might expect

what? The proteins that interact with each other are going to appear in the same
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species, right? So let's look at these two cases. We've got a bunch of-- eight

different genomes. And I've got gene 1 and gene 2, which I suspect might interact,

and gene 3 and gene 4, which I suspect might interact.

Now, looking at these two patterns of evolution, which one do we have more

confidence in that it interacts? The red one or the green one? So what do we notice

about the difference between them? What's true of the red one compared to the

green one? Yeah.

AUDIENCE: The red one is only in one branch of the tree.

PROFESSOR: The red one is only one branch in the tree and the green one is scattered across.

So let's take a vote. Do we believe that the red one is better evidence of interaction

or the green one is better evidence of interaction? Red? Green? Can I have an

advocate of green. Someone explain their rationale? Anyone in the quiet side of the

room? All right, Ed.

AUDIENCE: Because red is only on one branch of the tree, I'd expect that they're naturally more

correlated with each other. They have less-- they appear together in [INAUDIBLE]

so I'd expect [INAUDIBLE].

PROFESSOR: OK. So the argument is that red only occurs in one part of the tree. And so there

could be a very simple explanation for all the reds being in one part of the tree and

one not, which would be a single loss and gain event. Right? Somewhere early on,

perhaps here, I gain those two proteins. And then they're inherited throughout the

genome, like most of genes get inherited throughout the genome.

Whereas here, we've got independent events of gain and loss. And at each one of

these independent events, we're getting them moving jointly, either in or out of the

genome. So there's more evidence for green to be interacting than red. Everyone

buy that? Even some of the advocates of red? Questions? Yes.

AUDIENCE: Could there be a way of either objectively or mathematically [INAUDIBLE] that way,

or is it just the reasoning [INAUDIBLE]?
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PROFESSOR: One can do the statistics on it with known ones, right? I think that's probably the

best way. And we'll actually see that in one of these papers that uses-- well,

actually, now I don't recall whether they use this co-evolution. But yeah, there are

plenty of papers that actually have done the statistics on that. So it is supported.

And a related kind of question is what's called the Rosetta Stone approach.

Unfortunately, of the term Rosetta gets used far too much in computational biology.

So this has nothing to do with the other Rosetta that we've been talking about. And

this has to do with how often you find the same pair of genes in the same genome

versus split up in different genomes. OK.

So what we're going to look at next time then is an approach that combines these

kinds of data with the protein interaction physical measurements through the two-

hybrid and the affinity capture mass spec that actually uses the Bayesian networks

we talked about this time to predict whether two proteins are likely to interact based

on all of the available data. These evolutionary arguments, the [? sentiality ?]

arguments, and then the interaction data. Any final questions? OK, see you next

time.
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