Handout: One Sample Hypothesis Testing And Inference For the Mean

Hypothesis Testing

I. A sample from Normal distribution.

Suppose $X_1, ..., X_n$ is an independent sample from $Normal(\mu, \sigma^2)$ distribution.

μ	Unknown
σ^2	Either
$X_1,, X_n$	Known
n	Known
$m = \bar{X}$	Known
SD	Known
$Normal(\mu, \sigma^2)$	Assumed
	σ^{2} X_{1}, \dots, X_{n} $m = \bar{X}$ SD

Reasonable estimate for the population mean μ is

$$m = \bar{X}.$$

Note that

$$E(m) = \mu$$

and

$$SE(m-\mu_0) = \sqrt{Var(m-\mu_0)} = \sqrt{Var(m)} (= SE(m)) = \sqrt{\sigma^2/n} = \sigma/\sqrt{n}.$$

For testing

$$H_0: \quad \mu = \mu_0 \tag{1}$$

against
$$H_1:1)\mu \neq \mu_0 \text{ or}$$

$$2)\mu < \mu_0 \text{ or}$$

$$3)\mu > \mu_0$$

use

test statistics
$$d_{obt}^{\star} = \frac{m - \mu_0}{SE(m)}$$

which follows some distribution d^* .

Theorem. Under the above assumptions about the sample $X_1, ..., X_n$, for testing test H_0 : $\mu - \mu_0 = 0$ at α - significance level

VS

- 1) $H_1: \mu \mu_0 \neq 0$. Reject H_0 if $|d_{obt}^*| \geq d_{crit}^*(\alpha/2)$
- 2) $H_1: \mu \mu_0 < 0$. Reject H_0 if $d_{obt}^* \le -d_{crit}^*(\alpha)$
- 3) $H_1: \mu \mu_0 > 0$. Reject H_0 if $d^*_{obt} \ge d^*_{crit}(\alpha)$

Computation of SE(m) and choice of distribution d^* :

- 1. σ is known $SE(m) = \sigma/\sqrt{n}$ Test statistics $d_{obt}^* = z_{obt} = \frac{m-\mu_0}{\sigma/\sqrt{n}}$ follows standard Normal distribution z.
- 2. σ is unknown, but *n* is large (≥ 30) In this case can omit Normality assumption. $SE(m) = \sigma/\sqrt{n} \approx SD/\sqrt{n}$ and test statistics $d_{obt}^* = z_{obt} = \frac{m-\mu_0}{SD/\sqrt{n}}$ approximately follows standard Normal distribution *z*.
- 3. σ is unknown, and n is not large enough (≤ 30) $SE(m) = \sigma/\sqrt{n} \approx SD/\sqrt{n}$ and test Statistics $d_{obt}^* = t_{obt} = \frac{m-\mu_0}{SD/\sqrt{n}}$ follows t distribution with df = n-1degrees of freedom.

II. Proportions

For a random variable X drawn from a Binomial(n, p) distribution, let $\bar{p} = X/n$. For testing

$$H_0: p = p_0$$
(2)
against
$$H_1:1)p \neq p_0 \text{ or}$$
$$2)p < p_0 \text{ or}$$
$$3)p > p_0$$

use test statistics $d_{obt}^{\star} = \frac{\bar{p} - p_0}{SE(\bar{p} - p_0)}$.

Since for a Binomial(n, p) random variable X and $\bar{p} = X/n$, $Var(\bar{p} - p_0) = Var(\bar{p}) = \frac{p(1-p)}{n}$, for H_0 true (that is, $p = p_0$) have

$$SE(\bar{p} - p_0) = \sqrt{Var(\bar{p} - p_0)} = \sqrt{\frac{p_0(1 - p_0)}{n}}$$

Then

test statistics
$$d_{obt}^* = z_{obt} = \frac{\bar{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

has approximately Normal z distribution if np, $n(1-p) \ge 10$.

Confidence Intervals

For a test statistics
$$d_{obt}^* = \frac{m - \mu_0}{SE(m)}$$
 we reject H_0 if $|d_{obt}^*| \ge d_{crit}^*(\alpha/2)$. If
 $-d_{crit}^*(\alpha/2) < d_{obt}^* < d_{crit}^*(\alpha/2)$

we conclude that evidence against H_0 is not statistically significant at α - significance level.

Conficence interval for μ is computed by inverting non-rejection region

$$-d_{crit}^{*}(\alpha/2) < \frac{m - \mu_{0}}{SE(m)} < d_{crit}^{*}(\alpha/2)$$
$$-d_{crit}^{*}(\alpha/2)SE(m) < m - \mu_{0} < d_{crit}^{*}(\alpha/2)SE(m)$$

with $(1 - \alpha)100\%$ confidence interval for μ :

$$(m - d_{crit}^*(\alpha/2)SE(m); m + d_{crit}^*(\alpha/2)SE(m))$$