9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown

Homework Assignment 3

September 22, 2016

Due September 28, 2016 by 5:00pm

1. Suppose that the probability density function of a random variable X is as follows:

$$
f(x)=\left\{\begin{array}{cc}
\frac{(1-x)}{2} & -1 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

A. Sketch $f(x)$.
B. Find $F(X)$.
C. Compute $E(X)$ and $\operatorname{Var}(X)$.
D. Compute $\operatorname{Pr}\left(X>-\frac{1}{2}\right)$.
2. Suppose that the lifetime of an electron component follows an exponential distribution with parameter $\lambda=0.1$.
A. Find the probability that the lifetime is less than 10.
B. Find the probability that the lifetime is between 5 and 15 .
C. Find t such that the probability that the lifetime is greater than t is 0.01 .
3. If X is a Gaussian random variable with mean μ and variance σ^{2} draw a diagram and compute
A. $\operatorname{Pr}(|X-\mu| \leq 0.675 \sigma)$
B. $\operatorname{Pr}(X>\mu+\sigma)$
C. $\operatorname{Pr}(X=\sigma)$ (Explain).
4. Suppose X is a binomial random variable with parameters $n=40$ and $p=0.4$.
A. Assume that you can generate random numbers on the interval (0,1). Write an algorithm to simulate X.
B. Carry out a simulation of 200 samples of x in MATLAB ${ }^{\circledR}$ using the algorithm in A.
C. How many successes did you observe in your sample? How does this compare with the expected number of successes?
5. Suppose that in a certain population, individuals' heights are approximately normally distributed with $\mu=70$ inches and $\sigma=3$ inches.
A. What proportion of the population is over 6 feet tall?
B. What proportion of the population is between $5^{\prime} 5$ " and $5^{\prime} 10^{\prime \prime}$?
C. Show that the mode of this distribution is 70 inches.
6. To verify the calculations of the variance of a Gaussian random variable on page 10 of Lecture 3, we use properties of the gamma function. We want to show that

$$
\begin{equation*}
\int_{\infty}^{\infty} y^{2} e^{-y^{2} / 2} d y=\sqrt{2 \pi} . \tag{1}
\end{equation*}
$$

We proceed in 5 steps.
A. Draw a graph to explain why

$$
\int_{\infty}^{\infty} y^{2} e^{-y^{2} / 2} d y=2 \int_{0}^{\infty} y^{2} e^{-y^{2} / 2} d y .
$$

B. Show that

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x=2 \int_{0}^{\infty} u^{2 \alpha-1} e^{-u^{2}} d u
$$

by making the change of variable $x=u^{2}$.
C. Show that

$$
\int_{0}^{\infty} y^{2} e^{-y^{2} / 2} d y=2 \sqrt{2} \int_{0}^{\infty} v^{2} e^{-v^{2}} d v
$$

by making the change of variable $\sqrt{2} v=y$.
D. Use B to show that

$$
2 \int_{0}^{\infty} v^{2} e^{-v^{2}} d v=\Gamma\left(\frac{3}{2}\right)
$$

E. Use D and the fact that

$$
\Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2}
$$

to establish (1).
7. Take the first 400 observations from the MEG data set on the class website in the file MEG.data.
A. Compute the five-number summary.
B. Compute a boxplot.
C. Compute the sample mean $\bar{x}=n^{-1} \sum_{i=1}^{n} x_{i}$ and the sample standard deviation

$$
\hat{\sigma}=\left[n^{-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]^{1 / 2} .
$$

D. !Assuming a Gaussian distribution with mean \bar{x} and standard deviation $\hat{\sigma}$ compute a Q-Q plot for these data. Does this sample agree with a Gaussian distribution?

Hint: It might be useful in Problem 8 to use functions boxplot and icdf, To see the utilization of this function, type "help (name of function)" in the MATLAB command prompt.

MIT OpenCourseWare
https://ocw.mit.edu

9.07 Statistics for Brain and Cognitive Science

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

