9.07 Introduction to Statistics for Brain and Cognitive Sciences

 Emery N. Brown
Homework Assignment 4

October 12, 2016
Due October 19, 2016 at 5:00 PM

1. The joint probability mass function of two discrete random variables X and Y is given by

$$
f(x)=\left\{\begin{array}{cc}
c(4 x+3 y) & 0 \leq x \leq 4 \quad 0 \leq y \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

where x and y are all integer values.
A. Find the value of c to make $f(x, y)$ a well-defined joint pmf. (Hint: Make a table of the values of x and y and the associated values of $f(x, y)$.)
B. Find $\operatorname{Pr}(X \leq 1, Y \geq 1)$
C. Find the conditional pmf of X given $Y=1$.
D. Find the $E[X \mid Y=1]$.
E. Find the $\operatorname{Var}[X \mid Y=1]$.
2. If X and Y have the joint density function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{3}{4}+x y & 0<x<1,0<y<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

A. Find $f(y \mid x)$
B. Compute $\operatorname{Pr}\left(\left.Y>\frac{1}{2} \right\rvert\, X=\frac{1}{2}\right)$
C. Compute $E[Y \mid X]$.
D. Compute $\operatorname{Var}[Y \mid X]$.

page 2: 9.07 Homework Assignment 4

3. Suppose that X and Y have the joint probability density function

$$
f(x, y)=x e^{-x(y+1)} \quad 0<x<\infty \quad 0<y<\infty
$$

A. Find the marginal densities of X and Y. Are X and Y independent?
B. Find the conditional densities of X and Y.
4. The objective of this question is to show that the normalization constant for the Gaussian distribution is $\left(2 \pi \sigma^{2}\right)^{\frac{1}{2}}$. We take 4 steps to demonstrate that

$$
J=\int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right\} d x=\left(2 \pi \sigma^{2}\right)^{\frac{1}{2}}
$$

A. Make the change of variable $u=\frac{x-\mu}{\sigma}$ and consider

$$
I=\int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2} u^{2}\right\} d u
$$

B. Compute I^{2}

$$
I^{2}=I \times I=\int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2} u^{2}\right\} d u \int_{-\infty}^{\infty} \exp \left\{-\frac{1}{2} v^{2}\right\} d v
$$

Make the change of variables $u=r \cos \theta \quad v=r \sin \theta$ and show that

$$
I^{2}=\int_{0}^{\infty} \int_{0}^{2 \pi} r \exp \left\{-\frac{1}{2} r^{2}\right\} d \theta d r
$$

(Hint: Draw a picture of the transformation $u=r \cos \theta \quad v=r \sin \theta$. Use the change-of-variables formula on page 3 of the Addendum to Lecture 3)
C. Show that $I^{2}=2 \pi$
D. The result now follows by showing that $I=(2 \pi)^{\frac{1}{2}}$ and $J=I \sigma$.
5. Assume X, Y are bivariate Gaussian random variables with parameters $\mu_{x}, \mu_{y}, \sigma_{x}^{2}, \sigma_{y}^{2}$ and ρ. The marginal distribution of Y is Gaussian with mean μ_{y} and variance σ_{y}^{2}. Show that Y given X is Gaussian with

$$
\begin{gather*}
E(Y \mid X)=\mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right) \tag{1}\\
\operatorname{Var}(Y \mid X)=\sigma_{y}^{2}\left(1-\rho^{2}\right) \tag{2}
\end{gather*}
$$

A. Make the change of variables $U=\frac{X-\mu_{x}}{\sigma_{x}}$ and $V=\frac{Y-\mu_{y}}{\sigma_{y}}$ and show that U and V are bivariate Gaussian with $E(U)=E(V)=0, \operatorname{Var}(U)=\operatorname{Var}(V)=1$ and $\rho=\rho$.
B. Use the definition of the conditional distribution of V given U to show that it is a Gaussian distribution with

$$
\begin{aligned}
& E(V \mid U=u)=\rho u \\
& \operatorname{Var}(V \mid U=u)=1-\rho^{2}
\end{aligned}
$$

(Hint: You will need to complete the square in V.)
C. Equations 1 and 2 follow by making the change of variable $X=\sigma_{x} u+\mu_{x} \quad Y=\sigma_{y} V+\mu_{y}$. (Hint: Remember only Y is a random variable. Why is this important?)
6. Let X and Y be independent standard Gaussian random variables. Find the joint density of $U=Y+X$ and $V=Y+X$. (Hint: Use Example 5.7).
7. The buses on the north-line and the bus on the east-west line both stop at the same stop. Suppose that the waiting time T_{1} for the bus on the north-south line is an exponential random variable with parameter α and suppose that that the waiting time T_{2} for the bus on the eastwest line is an exponential random variable with parameter β.
A. Compute the probability that the bus on the north-south line arrives first. That is, $\operatorname{Pr}\left(T_{2}>T_{1}\right)$.
B. Compute $\operatorname{Pr}\left(T_{2}>2 T_{1}\right)$. What is the interpretation of this probability?

MIT OpenCourseWare
https://ocw.mit.edu

9.07 Statistics for Brain and Cognitive Science

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

