9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown

Homework 5

October 19, 2016
Due October 26, 2016 at 5:00 PM

1. Let X be a binomial random variable with parameters n and p and let Y be a binomial random variable with parameters m and p. Assume that X and Y are independent. Show that $Z=X+Y$ is a binomial random variable with parameters $n+m$ and p. (Hint: Use the arguments for the sum of two Poisson random variables in Example 5.4 in Lecture 5 and the relationship $\left.\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}=\binom{m+n}{k}.\right)$
2. In Example 5.4, we show that if X and Y are two independent Poisson random variables, with parameters λ_{1}, and λ_{2} respectively, then $Z=X+Y$ is a Poisson random variable with parameter $\lambda_{1}+\lambda_{2}$. Show that the pmf of X given Z is the binomial pmf with $n=z$ and $p=\lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)$.
A. First, explain why

$$
\operatorname{Pr}(X=x \cap Z=z)=\operatorname{Pr}(X=x \cap Y=z-x)=\frac{\lambda_{1}{ }^{x} e^{-\lambda_{1}}}{x!} \frac{\lambda_{2}^{z-x} e^{-\lambda_{2}}}{(z-x)!} .
$$

B. Next, to obtain the result compute

$$
\operatorname{Pr}(X \mid Z)=\frac{\operatorname{Pr}(X=x \quad Z=z)}{\operatorname{Pr}(Z=z)}=\frac{\operatorname{Pr}(X=x \quad Y=z \quad x)}{\operatorname{Pr}(Z=z)} .
$$

3. Suppose that X, Y and Z are independent discrete random variables and that each assumes the values 1,2 and 3 with probability $\frac{1}{3}$.
A. Find the pmf of $W=X+Y$.
B. Find the pmf of $V=Z+W$.
4. The joint probability density (Example 4.5, p. 5 of Lecture 5) is difficult to visualize. Therefore, you want to simulate values from this density and make a scatter plot.
A. Assume that $\lambda=3$ and use Algorithm 5.1 to simulate in MATLAB ${ }^{\circledR} 500$ draws (i.e. (X, Y) pairs) from $f_{x y}(x, y)$. This will entail first drawing X from the exponential density

$$
f_{x}(x)=3 e^{-3 x},
$$

using Example 3.2. Then, given $X=x$ draw Y from
$f_{y \mid x}(y \mid x)=3 e^{-3(y-x)}$,
again using Example 3.2.
B. Make a histogram plot of the $X \mathrm{~s}$. Does this look like what you would expect, i.e., the marginal density of X ?
C. Make a histogram plot of the Y s. Does this look like what you would expect, i.e., the marginal density of Y ?
5. The moment generating functions of the random variables in Problem 1 are for X, $\phi_{x}(t)=\left(p e^{t}+1-p\right)^{n}$ and for $Y \quad \phi_{y}(t)=\left(p e^{t}+1-p\right)^{m}$. Solve Problem 1 using the moment generating functions, that is by finding the moment generating function of $Z=X+Y$.
6. Suppose X has a gamma distribution with parameters α and β. Using the moment generating function
A. Compute the skewness of X.
B. Compute the kurtosis of X.
7. The moment generating function of a Gaussian random variable is $\exp \left(\frac{\sigma^{2} t^{2}}{2}\right)$. Find its fourth moment.

MIT OpenCourseWare
https://ocw.mit.edu

9.07 Statistics for Brain and Cognitive Science

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

