9.35 Sensation And Perception Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

9.35 Recitation 1

Eye and Retina

Hello, my name is...

And I've worked on...

Early Ideas

In man, soul and body touch each other only at a single point, the pineal gland in the head."

□ Renee Descartes

Early Ideas

Early Ideas

Is there really a homunculus?

Rays are not Colored

"And if at any time I speak of Light and Rays as coloured or endued with Colours, I would be understood to speak not philosophically and properly... For the Rays to speak properly are not coloured. In them there is nothing else than a certain Power and Disposition to stir up a Sensation of this or that Colour."

Sir Isaac Newton, Opticks, 1730

Better Ideas

Neurons, not the soul, process light!

What's a neuron??

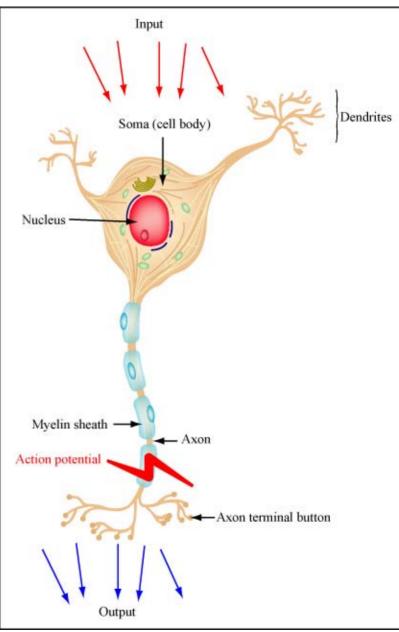


Figure by MIT OpenCourseWare.

- What's a neuron?
 - □ A neuron knows nothing but it's input
 - NT's change electrical potential across membrane of neuron
 - Neuron can then release NT's on other neurons

□ Receptive Field

- Really, just the input to a neuron
- By extension, the properties of the world that influence firing

- What's a neuron?
 - Nothing magic, but our senses/thoughts can only be conveyed through electricity!
 - □ Law of Specific Nerve Energy

• We will discuss recordings:

Retina

Photoreceptors

Bipolars

ON/OFF

Horizontal Cells

1st step of lateral inhibition

Lateral Inhibition

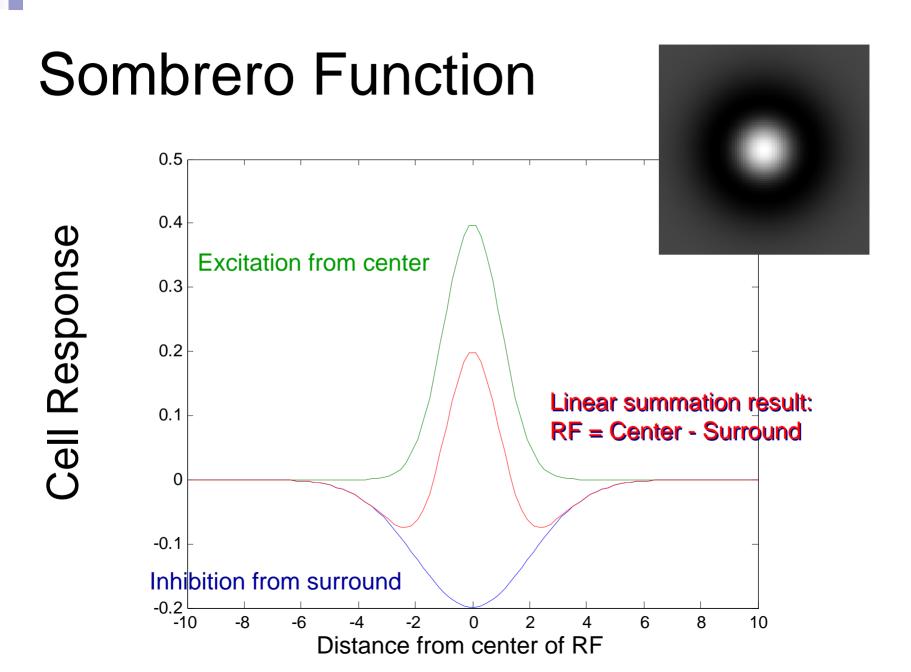
Wolfe et al: Ambient light invariance

But, this is really about edge detection

Ganglion Cells

RGC's have the most lateral inhibition Depolarization -> AP's

□ Almost perfect inhibition


Figures removed due to copyright restrictions.

Linear Summation

Difference of Gaussians

Sombrero Function

How does this RF detect edges?

Convolution

Mach Bands

Grids

DOG's explain some effects...

Grids

But not others!

Midgets and Parasols

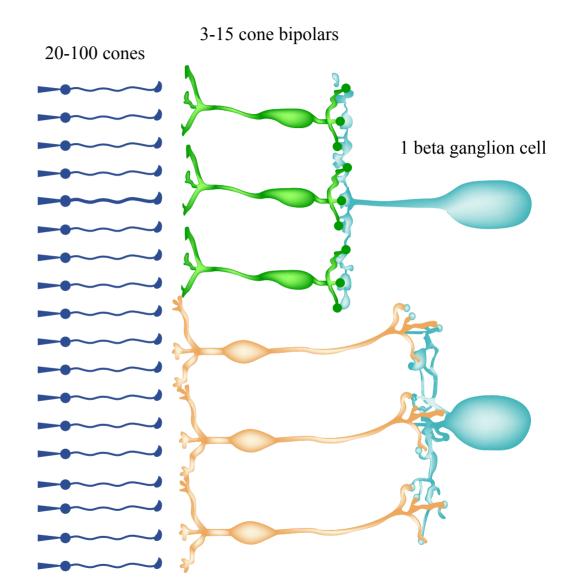
In addition to ON/OFF pathways, there is a second parallel system

Midgets and Parasols

Midgets/beta/X ganglion cells

 Small, slow AP's, small RF, colored, linear

 Parasols/alpha/Y ganglion cells


 Large, fast AP's, large RF, nonlinear, motion sensitive

Names depend on species and method of discovery, assumed homologous

Midgets

Small RF's
 (1 cone center near fovea)

webvision

Convergence of cones and bipolar cells upon ON- and OFF-center beta cells.

Midgets

Small RF's

webvision

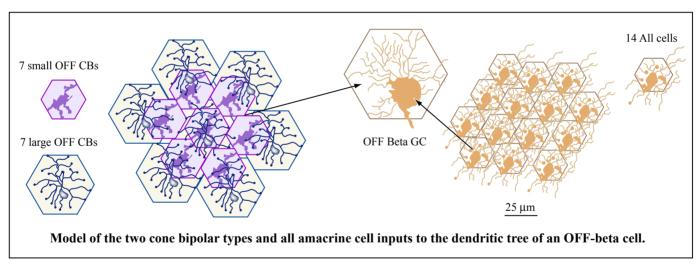


Figure by MIT OpenCourseWare.

Midgets

Linear summation responses

 Because they have few cone inputs, can also be color opponents (ie Red Center, Green Surround)

webvision

Parasols

HUGE RF's!

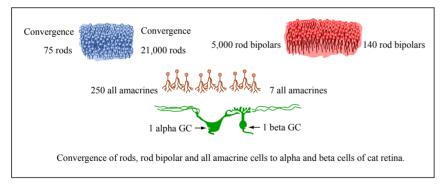


Figure by MIT OpenCourseWare.

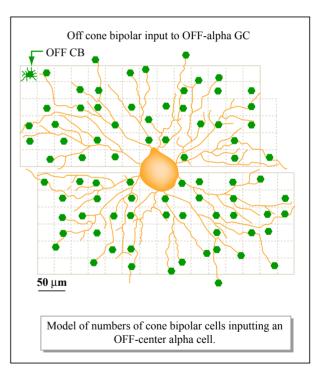


Figure by MIT OpenCourseWare.

webvision

Midgets and Parasols

Midgets

- High SF, -> Parvocellular LGN -> 'What' pathway/ventral visual stream
- □ If I say 'Ganglion Cell,' this is what I mean!

Parasols

- □ Low SF, high temporal frequencies
- Image: Second Second

Reading

Kolb, How the Retina Works (online)

Understand:

Eye structure, 5 basic cell types, adaptation, lateral inhibition, rod/cone, ON/OFF and midget/parasol pathways, receptive fields

Ignore:

Neurotransmitters, rhodopsin, cell subtypes (e.g., All, A17 etc)

Additional Resources

http://webvision.med.utah.edu