
The repressilator

1. Box 1 of the Elowitz and Leibler paper defines a set of differential equations that model the repressilator. A
number of properties of these equations are listed without mathematical derivation. Let’s do the math now.

(a) Find the steady state of the equations satisfyingp1 = p2 = p3 = m1 = m2 = m3 = p. Show that this
symmetric steady state is unique, i.e., that no other steady state is possible.

(b) Linearize the dynamical equations around the steady state solution. This is done by settingmi = p+ Æmi

andpi = p + Æpi whereÆmi andÆpi are very small andp is the steady state value. Then Taylor expand
the right hand side of the dynamical equations to first order inÆmi andÆpi. Define the vectorzT =
(Æm1; Æm2; Æm3; Æp1; Æp2; Æp3). Your linearized equations should look like
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andX is as defined in the paper. HereI is the3�3 identity matrix, andC is the cyclic permutation matrix
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(c) Suppose that you are given an eigenvalue� of A and the corresponding eigenvectorvT = (ÆmT ; ÆpT ).
Show that

�XCÆp = (�+ �)(�+ 1)Æp

In other words,� is related to the eigenvalues ofC. From this fact, find the six eigenvalues ofA, and
derive the stability condition listed in the paper (warning: there may be a typo in the paper).

(d) With the help of the stability condition, find a set of parameters for which the repressilator oscillates.
Simulate these oscillations using XPP or some other program. Submit your code along with the output of
your program.

2. Using the methods I demonstrated in class, construct a stochastic simulation of the repressilator using XPP or
some other program. You will need to follow the guidelines sketched in Box 1 of the paper under “Stochastic,
discrete approximation.” Compare your simulations with Figure 1 of the paper. Submit your code along with
the output of the program. Show both oscillatory and nonoscillatory behavior.
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