9.63 Laboratory in Visual Cognition

Fall 2009

Single factor design

Single design experiment

- One question
- One or more hypotheses
- One independent variable (2 or 3 levels)
- Often, 1 Control group (if the design is between-subjects) or 1 Control condition (if the design is within-subject)
- One dependent variable (response)

Textbook Chapters

- Chapter 5: Types of variables
- Chapter 8: Controls
- Chapter 7: Validity
- Chapter 11: Single factor design

Single Factor design

- An experiment concerns with 1 independent variable (factor), and N levels.
- Abuse of language: "condition" is used as factor and levels.
- "Condition" is often used in a within-subject experiment instead of "group".
- In a between-subject experiment, use the word group.
- Experiment with 1 factor have often a very precise hypothesis.

Experimental design

- The two most important part of a design:
- (1) the existence of a control group or a control condition
- (2) the random allocation of participants to groups or condition (if necessary for the hypothesis)
- Two types of design, for a single factor:
- Within-subjects design (all subjects do all conditions)
- Between-subjects design (conditions done by different subjects)

Design: order or counterbalancing

- Take care of order effects between your conditions (or levels of a factor): counterbalancing

If 3 conditions	If 4 conditions			
S1	ABC	A B CD	24 subjects	
S2	CAB	$?$	$(4 \times 3 \times 2)$	
S3	BCA			
S4	ACB	If conditions		
S5	BAC	A B CDE	120 subjects	
S6	CBA	$?$	$(5 \times 4 \times 3 \times 2)$	

Latin Square

\left.| Subject | Rank order | | |
| :--- | :--- | :--- | :--- |
| | 1 | 2 | 3 |$\right)$

-Randomization between conditions can be used when each condition is given several time to the subject, or when a sufficient number of subjects will be tested.

Reverse counterbalancing

- Reverse counterbalancing: when each condition can only be presented a few times.
- e.g. if 3 conditions

ABC CBA

- Reverse counterbalancing used in design in cognitive neuroscience (fMRI)
- Reverse counterbalancing onl acceptable if the 3 conditions act in a linear manner
- Effect of non linearity between the order effects of the 3 conditions order effects of the 3 conditions
arise, when a variable has a large arise, when a variable has a experiment and less later (e practice effect, "warm-up" effect).

Example I: Memory Task

Instructions: 9 photographs will be shown for

 half a second each. Your task is to memorize these pictures
Memory Confusion:

The scenes have the same spatial layout
You have seen these pictures

You were tested with these pictures

Factor

- Independent Variable : Type of foil manipulated at test Control: the foil image is a very different image Level 1 : the foil image resembles the original (has same spatial layout)

Old image (seen)

New image (similar foil)
New image (different foil)

Dependant factor: A typical "d prime"

Example II: Capacity of Visual Long Term Memory

Figure removed due to copyright restrictions.

Dependant factor: A typical "d prime"

Capacity of Visual Long Term Memory?

What we know...

Standing (1973)
10,000 images
83\% Recognition
.. people can remember thousands of images

Figures removed due to copyright restrictions

Massive Memory Experiment I

A stream of objects will be presented on the screen for ~ 1 second each.
Your primary task:
Remember them ALL!
afterwards you will be tested with...

Figures removed due to copyright restrictions.

Massive Memory Experiment I

Your other task:
Detect exact
repeats anywhere in
the stream

Which one did you see?
(go ahead and shout out your answer)

how tar can we push the fidelity of visual LTM representation ?

Same object, different states

Figure by MIT OpenCourseWare.

n
-A-

-B-

Is the novel condition statistically different from the exemplar and the state condition?

Example of News Article

Within subject: multiple conditions

- Multiple conditions (3 or more levels of a variable) are often used to determine the shape of the function that determine the relation between the dependent and independent variables.
- Multiple conditions are also used when 2 or more levels of the independent variable (factor) are considered "controls".

Example III: Multiples level of a factor

Figure removed due to copyright restrictions.

Levels of Independent Variable

- When you choose the levels of a factor, you may need to take into account the full range of variations along the variable
- Question: What is the effect of clutter on scene memory?

Experiment : Short-term memory

- Method: Participants were asked if a target image was identical to a prime image, after a delay allowing a consolidation in short-term memory. The target could be the same image, a different image that looks alike (peer) or a very different image.

Which Dependent Variable can I use?

Levels of Independent Variable:
 When the experiment calls for several conditions

- 1) the stimuli should cover as much as the range of the independent variable as practicable
- 2) the stimuli should be closed enough together that overlooking any interesting relationship between the stimuli is unlikely.
- 3) the spacing of stimuli: interval between the stimuli should be the same (when possible)

Experiment : Results

Internal Validity

- Internal validity: cause-effect relationship between the independent and dependent variable
- Watch out for "confounding effect"
- Example of confounded variables which may or not have an impact on the data:
- Time of the day, year (group 1 testing morning, group 2 afternoon)
- Gender, Age, education
- Familiarity with the task
- Subject's mood - (did you run one condition right after a holiday?)
- Subjects' hobbies - video game players in one condition, gardeners in another?
- Different experimental machines?
- Familiarity with experimenter? (Were all your friends in one group/task?)

Construct Validity

- Construct validity: extend to which the results support the theory behind the research:
- Ask the question: Would another theory predict the same experimental results?
- You can never ensure construct validity, but you can plan your research so that it is more plausible
- Examples (textbooks ~ p. 172)
- In internal validity, you strive to rule out alternative variables
- In construct validity, you rule out other possible explanations
- In most cases, you have to run another experiment to rule out threats of validity
- For project 1 presentation, one of the exercise in class will be to think about internal and construct validity while your colleagues will present.

Statistical Validity

- Extend to which data are shown to be the result of cause-effect relationship rather than accident (chance alone)
- Did you have enough subjects? Enough stimuli? Was the variance between your groups comparable?
- Threats to validity: textbook pages ~ 173179

Statistics Review

- Most research designs intended to provide evidence that one variable caused another
- In a true experiment, does mean score in one experimental group differ from another group?
- "Statistical significance" assesses the probability that results could be due to chance rather than the hypothesized cause
- E.g., could difference between 2 means be as large as it is by chance?
- Could the outcomes be as large as it is by chance alone?

Comparing 2 Means

- Null hypothesis $\left(\mathrm{H}_{0}\right)$: Population means are equal. Any differences between sample means are due to chance (random error).
- Research hypothesis $\left(\mathrm{H}_{1}\right)$: Population means are not equal.
- T-test: Test statistic associated with a probability of obtaining sample means that differ by observed amount if population means were equal

MIT OpenCourseWare
http://ocw.mit.edu

9.63 Laboratory in Visual Cognition

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

