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MIT Department of Brain and Cognitive Sciences 
9.641J, Spring 2005 - Introduction to Neural Networks 
Instructor: Professor Sebastian Seung 

9.641 Neural Networks

Problem Set 6: Deconvolution with Neural networks


(Due on Friday, Apr. 8) 
You are expected to turn in any code you might have used to answer a question. 

1.	 In this probem, you will help Helmut, your Eastern-German apprentice-astrophysicist-friend, to recover good 
data from the noisy data he collected with the cheap russian telescope he got for his birthday. Because this is a 
cheap telescope, the optics are very low quality and tend to blur the image. This can be modeled by convolving 

the true signal xi with a Gaussian filter gi = exp − (i−i0)2 , where the index i runs from −∞ to ∞ and adding 
σ2 

noise: 
n = g ∗ x + ǫ 

The convolution of signal x with filter g is defined as 

∞ 

(g ∗ x)i = gi−jxj (1) 
j=−∞ 

This definition is applicable to signals. If g and x are finite, they can be extended to infinite length by adding 
zeros at both ends. After this trick, called zero padding, the definition in Eq. (1) becomes applicable. For 
example, the sum in Eq. (1) becomes 

n−1 

(g ∗ x)i = gi−jxj (2) 
j=0 

for the finite time series x0, . . . , xn−1. 

(a) Matrix form of convolution. Show that the convolution of g0, g1, g2 and x0, x1, x2 can be written as 

g ∗ x = Gx 

where the matrix G is defined by 
  

g0 0 0 
 g1 g0 0  

  

G =  g2 g1 g0 
 (3) 

  

 0 g2 g1  

0 0 g2 

and g ∗ x and x are treated as column vectors. 

(b) Helmut called his local Eastern-German dealer and they gave him the width of the Gaussian that best 
accounts for the defect in the optics: 

σ = 2.5 

Compute the convolution matrix G so that your true signal x ≈ G−1 ∗ n, where n is the noisy signal 
collected by the telescope. Download the file ’telescope.mat’. It contains both the noisy signal from the 
telescope as well as the true signal (for you to evaluate the quality of your algorithm). Compare the x 
signal obtained with the true signal we gave you . How good is the fit? Explain. 

Hint: Use the matlab command toeplitz to form the matrix G. 

1 



√ 

[ ]+ 

(c) As we saw in class you can also use neural networks to perform deconvolution. Because they constrained 
the solution, they might help cope with noise. Deconvolving the signal is equivalent to minimizing the 
objective function L = ||n − Gx||2. Write down a neural network equation so that it minimises L. 
Hint: Write down the general form of the Lyapunov function L for a network with global inhibition and 
consider ∂L .

∂x 

(d) Simulate the neural network and compare the result with the true signal.	 How does it compare to direct 
deconvolution? Explain. 

2. More about Lyapunov functions 

(a) Construct a conserved quantity H(x, y) for the dynamics 

ẋ = f(y) ẏ = g(−x)


of two scalar variables x and y. Prove dH/dt = 0.


(b) Construct a Lyapunov function L(x, y) for the dynamics


ẋ + x = f(y) ẏ + y = g(−x)


of two scalar variables x and y. Prove that dL/dt ≤ 0, with equality only at steady states. Use the 
assumption that f and g are increasing functions. 

(c) Let 1 be the column vector of all ones. Recall that the all-to-all inhibitory network


ẋ + x = [b + αx − β1(1T x)]+


performs the computation minx V (x) where


β

(1TV =

1 − α
x T x − bT x + x)2 

2 2 

Show that 
V (x) = max S(x, y) 

y 

where y is a scalar variable and S is the saddle function 

√ 1 2S ≡ 
1 − α

x T x − bT x + βy(1T x) − y
2	 2

This means that the all-to-all inhibitory network effectively computes a solution to the minimax problem: 

min max S(x, y) 
x y 

(d) A variant of the all-to-all inhibitory network is one in which there is a global inhibitory neuron mediating 
inhibitory interactions between all the excitatory neurons, 

ẋ + x = [b + αx − β1y]+ (4) 
√ 

τy ẏ + y = β1
T x (5) 

In the special case τy = 0, this is equivalent to all-to-all inhibition. Show that this dynamics can be written 
as 

∂S 
ẋ + x = x −	 (6) 

∂x 

∂S 
τy ẏ =	 (7) 

∂y 

This is gradient ascent in the y variable, and “pseudo” gradient descent in x. 
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